On maximum likelihood estimation for Gaussian spatial autoregression models

被引:2
|
作者
Mohapl, J [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
关键词
spatial process; asymptotic normality; consistency; lattice sampling; stochastic difference equation;
D O I
10.1023/A:1003457632479
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article presents a central limit theorem for the maximum likelihood estimator of a vector-valued parameter in a linear spatial stochastic difference equation with Gaussian white noise right side. The result is compared to the known limit theorems derived for the approximate likelihood e.g. by Whittle (1954, Biometrika, 41, 434-439), Guyon (1982, Biometrika, 69, 95-105) and Rosenblatt (1985, Stationary Sequences and Random Fields, Birkhauser, Boston) and to the asymptotic properties of the quasi-likelihood studied by Heyde and Gay (1989, Stochastic Process. Appl., 31, 223-236; 1993, Stochastic Process. Appl., 45, 169-182). Application of the theory is demonstrated on several classes of models including the one considered by Niu (1995, J. Multivariate Anal., 55, 82-104).
引用
收藏
页码:165 / 186
页数:22
相关论文
共 50 条
  • [31] Feasible invertibility conditions and maximum likelihood estimation for observation-driven models
    Blasques, Francisco
    Gorgi, Paolo
    Koopman, Siem Jan
    Wintenberger, Olivier
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 1019 - 1052
  • [32] ON MOMENT CONDITIONS FOR QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE ARCH MODELS
    Avarucci, Marco
    Beutner, Eric
    Zaffaroni, Paolo
    ECONOMETRIC THEORY, 2013, 29 (03) : 545 - 566
  • [33] CONSISTENT MAXIMUM LIKELIHOOD ESTIMATION USING SUBSETS WITH APPLICATIONS TO MULTIVARIATE MIXED MODELS
    Ekvall, Karl Oskar
    Jones, Galin L.
    ANNALS OF STATISTICS, 2020, 48 (02) : 932 - 952
  • [34] Maximum likelihood estimation of generalized linear models for adaptive designs: Applications and asymptotics
    Selvaratnam, Selvakkadunko
    Yi, Yanqing
    Oyet, Alwell
    BIOMETRICAL JOURNAL, 2019, 61 (03) : 630 - 651
  • [35] Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix
    Pourahmadi, M
    BIOMETRIKA, 2000, 87 (02) : 425 - 435
  • [36] Penalized maximum likelihood estimation of a stochastic multivariate regression model
    Hansen, Elizabeth
    Chan, Kung-Sik
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (21-22) : 1643 - 1649
  • [37] ASYMPTOTIC PROPERTIES OF A MAXIMUM-LIKELIHOOD ESTIMATOR WITH DATA FROM A GAUSSIAN PROCESS
    YING, Z
    JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) : 280 - 296
  • [38] Asymptotic Properties of Quasi-Maximum Likelihood Estimators for Heterogeneous Spatial Autoregressive Models
    Qiu, Feng
    Ding, Hao
    Hu, Jianhua
    SYMMETRY-BASEL, 2022, 14 (09):
  • [39] Maximum likelihood estimation in the logistic regression model with a cure fraction
    Diop, Aba
    Diop, Aliou
    Dupuy, Jean-Francois
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 460 - 483
  • [40] Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes
    Bachoc, Francois
    Betancourt, Jose
    Furrer, Reinhard
    Klein, Thierry
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1962 - 2008