On maximum likelihood estimation for Gaussian spatial autoregression models

被引:2
|
作者
Mohapl, J [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
关键词
spatial process; asymptotic normality; consistency; lattice sampling; stochastic difference equation;
D O I
10.1023/A:1003457632479
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article presents a central limit theorem for the maximum likelihood estimator of a vector-valued parameter in a linear spatial stochastic difference equation with Gaussian white noise right side. The result is compared to the known limit theorems derived for the approximate likelihood e.g. by Whittle (1954, Biometrika, 41, 434-439), Guyon (1982, Biometrika, 69, 95-105) and Rosenblatt (1985, Stationary Sequences and Random Fields, Birkhauser, Boston) and to the asymptotic properties of the quasi-likelihood studied by Heyde and Gay (1989, Stochastic Process. Appl., 31, 223-236; 1993, Stochastic Process. Appl., 45, 169-182). Application of the theory is demonstrated on several classes of models including the one considered by Niu (1995, J. Multivariate Anal., 55, 82-104).
引用
收藏
页码:165 / 186
页数:22
相关论文
共 50 条
  • [21] Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions
    Blasques, Francisco
    van Brummelen, Janneke
    Gorgi, Paolo
    Koopman, Siem Jan
    JOURNAL OF ECONOMETRICS, 2024, 238 (01)
  • [22] Maximum composite likelihood estimation for spatial extremes models of Brown-Resnick type with application to precipitation data
    Kim, Moosup
    Lee, Sangyeol
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (03) : 1023 - 1059
  • [23] ON THE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR DIFFUSION PROCESSES
    Chang, Jinyuan
    Chen, Song Xi
    ANNALS OF STATISTICS, 2011, 39 (06) : 2820 - 2851
  • [24] Maximum Likelihood Estimation in Single Server Queues
    Saroja Kumar Singh
    Sankhya A, 2023, 85 : 931 - 947
  • [25] Maximum Likelihood Estimation in Single Server Queues
    Singh, Saroja Kumar
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 931 - 947
  • [26] Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes
    Abt, M
    Welch, WJ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 127 - 137
  • [27] Generalized Gaussian quasi-maximum likelihood estimation for most common time series
    Boularouk, Yakoub
    Bardet, Jean-Marc
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (04) : 1459 - 1478
  • [28] Maximum likelihood estimation in logistic regression models with a diverging number of covariates
    Liang, Hua
    Du, Pang
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1838 - 1846
  • [29] Maximum likelihood estimation of sparse networks with missing observations
    Gaucher, Solenne
    Klopp, Olga
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 215 : 299 - 329
  • [30] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710