WHISTLER TURBULENCE WAVEVECTOR ANISOTROPIES: PARTICLE-IN-CELL SIMULATIONS

被引:24
|
作者
Gary, S. Peter [1 ]
Saito, Shinji [2 ]
Narita, Yasuhito [3 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany
来源
ASTROPHYSICAL JOURNAL | 2010年 / 716卷 / 02期
基金
美国国家航空航天局;
关键词
interplanetary medium; plasmas; turbulence; SOLAR-WIND TURBULENCE; MAGNETIC-FIELD; HELIOS-OBSERVATIONS; DISSIPATION RANGE; ENERGY CASCADE; DEPENDENCE; SPECTRUM; AU;
D O I
10.1088/0004-637X/716/2/1332
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Two-dimensional electromagnetic particle-in-cell simulations of whistler turbulence in a magnetized, homogeneous, collisionless plasma of electrons and protons are carried out. Enhanced magnetic fluctuation spectra are initially imposed at relatively long wavelengths, and, as in previous such simulations, the temporal evolution shows a forward cascade of magnetic fluctuation energy to shorter wavelengths, with more fluctuation energy at a given wavenumber perpendicular to B(o) than at the same wavenumber parallel to the background field. The new result here is that the wavevector anisotropy is very different for each of the three components of the fluctuating magnetic field. Here, parallel to denotes the direction parallel to the background magnetic field B(o), perpendicular to indicates the direction perpendicular to B(o) and in the simulation plane, and the symbol perpendicular to perpendicular to denotes the direction perpendicular to both B(o) and the simulation plane. The parallel magnetic fluctuations show more energy at k(parallel to) than at k(perpendicular to), whereas the perpendicular in-plane magnetic fluctuations show more energy at k(perpendicular to) than at k(parallel to). Finally, the out-of-plane magnetic fluctuations, vertical bar delta B(perpendicular to perpendicular to)vertical bar(2), strongly prefer to propagate in the k(perpendicular to) direction.
引用
收藏
页码:1332 / 1335
页数:4
相关论文
共 50 条
  • [1] Whistler turbulence: Particle-in-cell simulations
    Saito, Shinji
    Gary, S. Peter
    Li, Hui
    Narita, Yasuhito
    PHYSICS OF PLASMAS, 2008, 15 (10)
  • [2] Cascade of whistler turbulence: Particle-in-cell simulations
    Gary, S. Peter
    Saito, Shinji
    Li, Hui
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (02)
  • [3] Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations
    Chang, Ouliang
    Gary, S. Peter
    Wang, Joseph
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [4] Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations
    Saito, S.
    Gary, S. Peter
    PHYSICS OF PLASMAS, 2012, 19 (01)
  • [5] Energy dissipation by whistler turbulence: Three-dimensional particle-in-cell simulations
    Chang, Ouliang
    Gary, S. Peter
    Wang, Joseph
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [6] FORWARD CASCADE OF WHISTLER TURBULENCE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS
    Gary, S. Peter
    Chang, Ouliang
    Wang, Joseph
    ASTROPHYSICAL JOURNAL, 2012, 755 (02):
  • [7] Particle-in-cell Simulations of Electron and Ion Dissipation by Whistler Turbulence: Variations with Electron β
    Hughes, R. Scott
    Gary, S. Peter
    Wang, Joseph
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 835 (01)
  • [8] Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations
    Chang, Ouliang
    Gary, S. Peter
    Wang, Joseph
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (06) : 2824 - 2833
  • [9] Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations
    Hughes, R. Scott
    Gary, S. Peter
    Wang, Joseph
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (24) : 8681 - 8687
  • [10] Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
    Saito, S.
    Gary, S. Peter
    Narita, Y.
    PHYSICS OF PLASMAS, 2010, 17 (12)