Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class

被引:0
|
作者
Corwin, Ivan [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Clay Math Inst, Providence, RI 02903 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Inst Poincare, F-75005 Paris, France
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III | 2014年
关键词
KPZ; symmetric polynomials; quantum integrable systems; Bethe ansatz; TASEP; FREE-ENERGY; POLYMER; FLUCTUATIONS; TURBULENCE; EQUATION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrable probability has emerged as an active area of research at the interface of probability/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible to write down concise and exact formulas for expectations of a variety of interesting observables (or functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access to exact descriptions of the properties and statistics of large universality classes and universal scaling limits for disordered systems. We focus here on examples of integrable probabilistic systems related to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from connections with symmetric function theory and quantum integrable systems.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 50 条
  • [41] The 1 + 1 dimensional Kardar-Parisi-Zhang equation: more surprises
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (04):
  • [42] Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation
    Meerson, Baruch
    Katzav, Eytan
    Vilenkin, Arkady
    PHYSICAL REVIEW LETTERS, 2016, 116 (07)
  • [43] Depinning in the quenched Kardar-Parisi-Zhang class. II. Field theory
    Mukerjee, Gauthier
    Wiese, Kay Joerg
    PHYSICAL REVIEW E, 2023, 107 (05)
  • [44] Partial Yet Definite Emergence of the Kardar-Parisi-Zhang Class in Isotropic Spin Chains
    Takeuchi, Kazumasa A.
    Takasan, Kazuaki
    Busani, Ofer
    Ferrari, Patrik L.
    Vasseur, Romain
    De Nardis, Jacopo
    PHYSICAL REVIEW LETTERS, 2025, 134 (09)
  • [45] Circular Kardar-Parisi-Zhang interfaces evolving out of the plane
    Carrasco, I. S. S.
    Oliveira, T. J.
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [46] Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics
    Halpin-Healy, Timothy
    Lin, Yuexia
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [47] Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface
    Jana, Debayan
    Haldar, Astik
    Basu, Abhik
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [48] Emergent Kardar-Parisi-Zhang Phase in Quadratically Driven Condensates
    Diessel, Oriana K.
    Diehl, Sebastian
    Chiocchetta, Alessio
    PHYSICAL REVIEW LETTERS, 2022, 128 (07)
  • [49] Time-averaged height distribution of the Kardar-Parisi-Zhang interface
    Smith, Naftali R.
    Meerson, Baruch
    Vilenkin, Arkady
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [50] Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces
    Iwatsuka, Takayasu
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2020, 124 (25)