Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class

被引:0
|
作者
Corwin, Ivan [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Clay Math Inst, Providence, RI 02903 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Inst Poincare, F-75005 Paris, France
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III | 2014年
关键词
KPZ; symmetric polynomials; quantum integrable systems; Bethe ansatz; TASEP; FREE-ENERGY; POLYMER; FLUCTUATIONS; TURBULENCE; EQUATION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrable probability has emerged as an active area of research at the interface of probability/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible to write down concise and exact formulas for expectations of a variety of interesting observables (or functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access to exact descriptions of the properties and statistics of large universality classes and universal scaling limits for disordered systems. We focus here on examples of integrable probabilistic systems related to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from connections with symmetric function theory and quantum integrable systems.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 50 条
  • [31] Half-Space Stationary Kardar-Parisi-Zhang Equation
    Barraquand, Guillaume
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1149 - 1203
  • [32] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Ferrari, Patrik L.
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (03) : 377 - 399
  • [33] Kardar-Parisi-Zhang Equation from Long-Range Exclusion Processes
    Yang, Kevin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (03) : 1535 - 1663
  • [34] Jointly invariant measures for the Kardar-Parisi-Zhang equation
    Groathouse, Sean
    Rassoul-Agha, Firas
    Seppalainen, Timo
    Sorensen, Evan
    PROBABILITY THEORY AND RELATED FIELDS, 2025, : 303 - 372
  • [35] Competing Universalities in Kardar-Parisi-Zhang Growth Models
    Saberi, Abbas Ali
    Dashti-Naserabadi, Hor
    Krug, Joachim
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [36] Minimum action method for the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    Ren, Weiqing
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [37] Exact Solution for the Kardar-Parisi-Zhang Equation with Flat Initial Conditions
    Calabrese, Pasquale
    Le Doussal, Pierre
    PHYSICAL REVIEW LETTERS, 2011, 106 (25)
  • [38] Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2020, 124 (06)
  • [39] Kardar-Parisi-Zhang universality in discrete two-dimensional driven-dissipative exciton polariton condensates
    Deligiannis, Konstantinos
    Fontaine, Quentin
    Squizzato, Davide
    Richard, Maxime
    Ravets, Sylvain
    Bloch, Jacqueline
    Minguzzi, Anna
    Canet, Leonie
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [40] From the sine-Gordon field theory to the Kardar-Parisi-Zhang growth equation
    Calabrese, Pasquale
    Kormos, Marton
    Le Doussal, Pierre
    EPL, 2014, 107 (01)