Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class

被引:0
|
作者
Corwin, Ivan [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Clay Math Inst, Providence, RI 02903 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Inst Poincare, F-75005 Paris, France
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III | 2014年
关键词
KPZ; symmetric polynomials; quantum integrable systems; Bethe ansatz; TASEP; FREE-ENERGY; POLYMER; FLUCTUATIONS; TURBULENCE; EQUATION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrable probability has emerged as an active area of research at the interface of probability/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible to write down concise and exact formulas for expectations of a variety of interesting observables (or functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access to exact descriptions of the properties and statistics of large universality classes and universal scaling limits for disordered systems. We focus here on examples of integrable probabilistic systems related to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from connections with symmetric function theory and quantum integrable systems.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 50 条
  • [21] Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension
    Alves, S. G.
    Oliveira, T. J.
    Ferreira, S. C.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [22] Kardar-Parisi-Zhang universality in the coherence time of nonequilibrium one-dimensional quasicondensates
    Amelio, Ivan
    Chiocchetta, Alessio
    Carusotto, Iacopo
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [23] Non-universal parameters, corrections and universality in Kardar-Parisi-Zhang growth
    Alves, Sidiney G.
    Oliveira, Tiago J.
    Ferreira, Silvio C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [24] Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [25] Dimensional crossover in Kardar-Parisi-Zhang growth
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [26] Phenomenology of aging in the Kardar-Parisi-Zhang equation
    Henkel, Malte
    Noh, Jae Dong
    Pleimling, Michel
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [27] Kardar-Parisi-Zhang scaling in the Hubbard model
    Moca, Caetaelin Pascu
    Werner, Miklos Antal
    Valli, Angelo
    Prosen, Tomaz
    Zarand, Gergely
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [28] Kardar-Parisi-Zhang growth in ε dimensions and beyond
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [29] Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: Mapping onto the Kardar-Parisi-Zhang universality class
    Kulkarni, Manas
    Huse, David A.
    Spohn, Herbert
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [30] Optimal paths of nonequilibrium stochastic fields: The Kardar-Parisi-Zhang interface as a test case
    Hartmann, Alexander K.
    Meerson, Baruch
    Sasorov, Pavel
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):