Polymorphism in Self-Assembly of Peptide-Based β-Hairpin Contributes to Network Morphology and Hydrogel Mechanical Rigidity

被引:33
|
作者
Miller, Yifat [1 ,2 ]
Ma, Buyong [3 ]
Nussinov, Ruth [3 ,4 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel
[3] NCI, Basic Sci Program, Leidos Biomed Res Inc, Canc & Inflammat Program, Frederick, MD 21702 USA
[4] Tel Aviv Univ, Sackler Sch Med, Sackler Inst Mol Med, Dept Human Genet & Mol Med, IL-69978 Tel Aviv, Israel
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2015年 / 119卷 / 02期
基金
美国国家卫生研究院;
关键词
PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; DESIGNED PEPTIDE; POTENTIAL FUNCTIONS; LIQUID WATER; FLOW-CONTROL; PROTEINS; AGGREGATION; FIBRILS; RELEASE;
D O I
10.1021/jp511485n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogels are proving to be an excellent class of materials for biomedical applications. The molecular self-assembly of designed MAX1 beta-hairpin peptides into fibrillar networks has emerged as a novel route to form responsive hydrogels. Herein, computational modeling techniques are used to investigate the relative arrangements of individual hairpins within the fibrils that constitute the gel. The modeling provides insight into the morphology of the fibril network, which defines the gels mechanical properties. Our study suggests polymorphic arrangements of the hairpins within the fibrils; however, the relative populations and the relative conformational energies of the polymorphic arrangements show a preference toward an arrangement of hairpins where their turn regions are not capable of forming intermolecular interaction. Repulsive intramolecular electrostatic interactions appear to dictate the formation of fibrils with shorter, rather than longer, persistent lengths. These repulsive intramolecular interactions also disfavor the formation of fibril entanglements. Taken together, the modeling predicts that MAX1 forms a network containing a large number of branch points, a network morphology supported by the formation of short fibril segments. We posit that, under static conditions, the preferred branched structures of the MAX1 peptide assembly result in a cross-linked hydrogel organization. At the same time, the shear stress leads to short fibrillar structures, thus fluidic hydrogel states.
引用
收藏
页码:482 / 490
页数:9
相关论文
共 50 条
  • [1] Self-assembly pathways and polymorphism in peptide-based nanostructures
    Dudukovic, Nikola A.
    Hudson, Benjamin C.
    Paravastu, Anant K.
    Zukoski, Charles F.
    NANOSCALE, 2018, 10 (03) : 1508 - 1516
  • [2] Peptide-based Nanomaterials: Self-assembly and Applications
    Tan, Lina
    Huan, Ren
    Wu, Li Fang
    Bao, Yanni
    Chen, Yu
    Zou, Qian Li
    Yong, Jin
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2023, 23 (04) : 399 - 411
  • [3] Self-assembly of peptide-based diblock oligomers
    Klok, HA
    Langenwalter, JF
    Lecommandoux, S
    MACROMOLECULES, 2000, 33 (21) : 7819 - 7826
  • [4] Peptide Self-Assembly and Peptide-based Polymers for New Bionanomaterials
    Liskamp, Rob M. J.
    BIOPOLYMERS, 2011, 96 (04) : 451 - 451
  • [5] Engineering Complementary Hydrophobic Interactions to Control β-Hairpin Peptide Self-Assembly, Network Branching, and Hydrogel Properties
    Sathaye, Sameer
    Zhang, Huixi
    Sonmez, Cem
    Schneider, Joel P.
    MacDermaid, Christopher M.
    Von Bargen, Christopher D.
    Saven, Jeffery G.
    Pochan, Darrin J.
    BIOMACROMOLECULES, 2014, 15 (11) : 3891 - 3900
  • [6] Structure and self-assembly of amyloid peptide-based hydrogelators
    Hamley, Ian W.
    Castelletto, Valeria
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C26 - C26
  • [7] Towards understanding the self-assembly of peptide-based nanotubes
    Mayes, Maricris
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] Peptide-based nanomaterials: Self-assembly, properties and applications
    Li, Tong
    Lu, Xian-Mao
    Zhang, Ming-Rong
    Hu, Kuan
    Li, Zhou
    BIOACTIVE MATERIALS, 2022, 11 : 268 - 282
  • [9] Self-assembly and responsiveness in peptide-based block copolymers
    Strange, Gregory
    Smith, Ian
    Machado, Craig
    Savin, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [10] Divalent metal ion modulation of a simple peptide-based hydrogel: self-assembly and viscoelastic properties
    Shao, Tsuimy
    Noroozifar, Meissam
    Kraatz, Heinz-Bernhard
    SOFT MATTER, 2024, 20 (12) : 2720 - 2729