Relationship between pharmacokinetic half-life and pharmacodynamic half-life in effect-time modeling

被引:0
|
作者
Keller, F [1 ]
Czock, D [1 ]
Zellner, D [1 ]
Giehl, M [1 ]
机构
[1] Univ Hosp Ulm, Dept Med, Div Nephrol, D-89070 Ulm, Germany
关键词
pharmacokinetics; pharmacodynamics; Hill equation; half-life;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A pharmacodynamic parameter relating time-dependent changes of the effect with time-dependent changes of concentrations has yet to be developed. In pharmacokinetics, half-lives (T-1/2kin) are used to describe the relation between concentration (C) and time (t). In pharmacodynamics, often the sigmoid E-max model and the Hill equation are used (E = E-max C-H/(EC50H + C-H)) to describe the relation between effect CE) and concentration (C). To describe the correlation between effect (E) and time (t), a pharmacodynamic half-life (T-1/2dyn) could be estimated if the use of the term half-life is not restricted only to log-linear first order processes, To bisect the drug effect a variable time (t(1-2) = t(2)-t(1)) will be required for this nonlinear process. The bisection of the effect (E-2 = 1/2 E-1) is associated with a decrease in concentrations (C-2 = C-1 exp(-0.693 t(1-2)/T-1/2kin)). A mathematical relationship can be derived between pharmacodynamic half-life (T-1/2dyn = t(1-2)) and pharmacokinetic half-life (T-1/2dyn = T-1/2kin (ln (1 + ln(a)/ln(2))/H) with (a = (EC50H + C-1(H))/(EC50H + C-2(H))). For concentrations in the range of the EC50 value with the Hill coefficient (H = 1), the pharmacodynamic half-life will be 1.6 - 2.0 times the kinetic half-life (T-1/2dyn less than or equal to 2.0 T-1/2kin). For high concentrations (C-1 > EC50), the dynamic half-life will grow much longer than the kinetic half-life, consequently the effect of a drug will not increase but it will last longer. The pharmacodynamic half-life turns out to be a specific estimate for the effect time relation, being a concentration-dependent function of the kinetic half-life.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 50 条
  • [31] The Dependence of the Deformation of Exotic Nuclei on the Half-Life
    Yu. A. Zaripova
    V. V. Dyachkov
    A. V. Yushkov
    Physics of Atomic Nuclei, 2019, 82 : 1597 - 1601
  • [32] Standardisation and half-life of 89Zr
    Garcia-Torano, E.
    Peyres, V.
    Roteta, M.
    Mejuto, M.
    Sanchez-Cabezudo, A.
    Romero, E.
    APPLIED RADIATION AND ISOTOPES, 2018, 134 : 421 - 425
  • [33] Update on 67Cu half-life
    Kozempel, J.
    Bulgheroni, A.
    Simonelli, F.
    Holzwarth, U.
    Abbas, K.
    Gibson, N.
    RADIOCHIMICA ACTA, 2011, 99 (12) : 771 - 773
  • [34] Measurement of the 171Tm half-life
    Kajan, I
    Pomme, S.
    Heinitz, S.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2022, 331 (01) : 645 - 653
  • [35] Half-life measurement of 55Fe
    Van Ammel, R.
    Pomme, S.
    Sibbens, G.
    APPLIED RADIATION AND ISOTOPES, 2006, 64 (10-11) : 1412 - 1416
  • [36] The Dependence of the Deformation of Exotic Nuclei on the Half-Life
    Zaripova, Yu. A.
    Dyachkov, V. V.
    Yushkov, A. V.
    PHYSICS OF ATOMIC NUCLEI, 2019, 82 (12) : 1597 - 1601
  • [37] Measurement of the half-life of 68Ga
    Garcia-Torano, Eduardo
    Peyres Medina, Virginia
    Romero, Eduardo
    Roteta, Miguel
    APPLIED RADIATION AND ISOTOPES, 2014, 87 : 122 - 125
  • [38] Measurement of the 177Lu half-life
    Pomme, S.
    Paepen, J.
    Altzitzoglou, T.
    Van Ammel, R.
    Yeltepe, E.
    APPLIED RADIATION AND ISOTOPES, 2011, 69 (09) : 1267 - 1273
  • [39] Measurement of the 54Mn half-life
    Van Ammel, R.
    Paepen, J.
    Pomme, S.
    Sibbens, G.
    APPLIED RADIATION AND ISOTOPES, 2010, 68 (12) : 2387 - 2392
  • [40] Measurement of the 109Cd half-life
    Van Ammel, R.
    Pomme, S.
    Paepen, J.
    Sibbens, G.
    APPLIED RADIATION AND ISOTOPES, 2011, 69 (05) : 785 - 789