Simple-direct-injective modules

被引:22
作者
Camillo, Victor [1 ]
Ibrahim, Yasser [2 ]
Yousif, Mohamed [3 ]
Zhou, Yiqiang [4 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[3] Ohio State Univ, Dept Math, Lima, OH 45804 USA
[4] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Artinian serial ring; C2-module; C3-module; Injective module; Regular ring; Simple-direct-injective module; V-ring;
D O I
10.1016/j.jalgebra.2014.07.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M over a ring is called simple-direct-injective if, whenever A and B are simple submodules of M with A congruent to B and B subset of(circle plus) M, we have A subset of(circle plus) M. Various basic properties of these modules are proved, and some well-studied rings are characterized using simple-direct-injective modules. For instance, it is proved that a ring R is artinian serial with Jacobson radical square zero if and only if every simple-direct-injective right R-module is a C3-module, and that a regular ring R is a right V-ring (i.e., every simple right R-module is injective) if and only if every cyclic right R-module is simple-direct-injective. The latter is a new answer to Fisher's question of when regular rings are V-rings [8]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 12 条
[1]   Soc-injective rings and modules [J].
Amin, I ;
Yousif, M ;
Zeyada, N .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) :4229-4250
[2]  
Amin I., ALGEBRA C IN PRESS
[3]  
Anderson F. W., 1974, Rings and Categories of Modules
[4]  
[Anonymous], 1990, CONTINUOUS DISCRETE, DOI DOI 10.1017/CBO9780511600692
[5]  
[Anonymous], 2003, CAMBRIDGE TRACTS MAT, DOI DOI 10.1017/CBO9780511546525
[6]  
Bjork J.E., 1970, J. Reine Angew Math., V245, P63
[7]  
Clark J, 2006, FRONT MATH, P1
[8]  
Dung N. V., 1994, Extending Modules
[9]  
Faith C., 1976, Algebra II, Ring Theory, DOI [10.1007/978-3-642-65321-6, DOI 10.1007/978-3-642-65321-6]
[10]  
Fisher J., 1974, Lecture Notes in Pure and Applied Mathematics, V7, P101