VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana

被引:79
作者
Chen, Honglin [1 ,2 ]
Liu, Liping [3 ]
Wang, Lixia [1 ,2 ]
Wang, Suhua [1 ,2 ]
Cheng, Xuzhen [1 ,2 ]
机构
[1] Chinese Acad Agr Sci, Minist Agr, Key Lab Crop Germplasm Resources & Utilizat, Beijing 100081, Peoples R China
[2] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[3] China Agr Univ, State Key Lab Agrobiotechnol, Coll Biol Sci, Beijing 100193, Peoples R China
关键词
Vigna radiata; VrDREB2A; Transcription factor; Salt tolerance; Drought tolerance; RESPONSIVE GENE-EXPRESSION; ABIOTIC STRESS; FUNCTIONAL-ANALYSIS; OSMOTIC-STRESS; RICE; OVEREXPRESSION; SEQUENCE; ENCODES; CLONING; DOMAIN;
D O I
10.1007/s10265-015-0773-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Mung bean (Vigna radiata L.) is commonly grown in Asia as an important nutritional dry grain legume, as it can survive better in arid conditions than other crops. Abiotic stresses, such as drought and high-salt contents, negatively impact its growth and production. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors play a significant role in the response to these stress stimuli via transcriptional regulation of downstream genes containing the cis-element dehydration-responsive element (DRE). However, the molecular mechanisms involved in the drought tolerance of this species remain elusive, with very few reported candidate genes. No DREB2 ortholog has been reported for mung bean, and the function of mung bean DREB2 is not clear. In this study, a novel VrDREB2A gene with conserved AP2 domains and transactivation ability was isolated from mung bean. A modified VrDREB2A protein lacking the putative negative regulatory domain encoded by nucleotides 394-543 was shown to be localized in the nucleus. Expression of the VrDREB2A gene was induced by drought, high salt concentrations and abscisic acid treatment. Furthermore, comparing with the wild type Arabidopsis, the overexpression of VrDREB2A activated the expression of downstream genes in transgenic Arabidopsis, resulting in enhanced tolerance to drought and high-salt stresses and no growth retardation. The results from this study indicate that VrDREB2A functions as an important transcriptional activator and may help increase the abiotic stress tolerance of the mung bean plant.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 43 条
  • [31] A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance
    Li, Xiao-lan
    Yang, Xing
    Hu, Yu-xin
    Yu, Xiao-dong
    Li, Qiu-li
    PLANT CELL REPORTS, 2014, 33 (05) : 767 - 778
  • [32] The DREB A-5 Transcription Factor ScDREB5 From Syntrichia caninervis Enhanced Salt Tolerance by Regulating Jasmonic Acid Biosynthesis in Transgenic Arabidopsis
    Liu, Jinyuan
    Yang, Ruirui
    Liang, Yuqing
    Wang, Yan
    Li, Xiaoshuang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [33] ZmLBD2 a maize (Zea mays L.) lateral organ boundaries domain (LBD) transcription factor enhances drought tolerance in transgenic Arabidopsis thaliana
    Jiao, Peng
    Wei, Xiaotong
    Jiang, Zhenzhong
    Liu, Siyan
    Guan, Shuyan
    Ma, Yiyong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [34] A novel Ap2/ERF transcription factor from Stipa purpurea leads to enhanced drought tolerance in Arabidopsis thaliana
    Yunqiang Yang
    Chao Dong
    Xiong Li
    Jiancan Du
    Min Qian
    Xudong Sun
    Yongping Yang
    Plant Cell Reports, 2016, 35 : 2227 - 2239
  • [35] A novel Ap2/ERF transcription factor from Stipa purpurea leads to enhanced drought tolerance in Arabidopsis thaliana
    Yang, Yunqiang
    Dong, Chao
    Li, Xiong
    Du, Jiancan
    Qian, Min
    Sun, Xudong
    Yang, Yongping
    PLANT CELL REPORTS, 2016, 35 (11) : 2227 - 2239
  • [36] A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat
    Gao, Shi-Qing
    Chen, Ming
    Xia, Lian-Qin
    Xiu, Hui-Jun
    Xu, Zhao-Shi
    Li, Lian-Cheng
    Zhao, Chang-Ping
    Cheng, Xian-Guo
    Ma, You-Zhi
    PLANT CELL REPORTS, 2009, 28 (02) : 301 - 311
  • [37] A MYB-related transcription factor from peanut, AhMYB30, improves freezing and salt stress tolerance in transgenic Arabidopsis through both DREB/CBF and ABA-signaling pathways
    Chen, Na
    Pan, Lijuan
    Yang, Zhen
    Su, Maowen
    Xu, Jing
    Jiang, Xiao
    Yin, Xiangzhen
    Wang, Tong
    Wan, Feifei
    Chi, Xiaoyuan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [38] Isolation and Functional Analysis of MbCBF2, a Malus baccata (L.) Borkh CBF Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana
    Li, Xingguo
    Liang, Xiaoqi
    Li, Wenhui
    Yao, Anqi
    Liu, Wanda
    Wang, Yu
    Yang, Guohui
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [39] Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana
    Tang, Mingjuan
    Liu, Xiaofei
    Deng, Huaping
    Shen, Shihua
    PLANT SCIENCE, 2011, 181 (06) : 623 - 631
  • [40] A New AP2/ERF Transcription Factor from the Oil Plant Jatropha curcas Confers Salt and Drought Tolerance to Transgenic Tobacco
    Xuehua Wang
    Haiyang Han
    Jun Yan
    Fang Chen
    Wei Wei
    Applied Biochemistry and Biotechnology, 2015, 176 : 582 - 597