VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana

被引:78
|
作者
Chen, Honglin [1 ,2 ]
Liu, Liping [3 ]
Wang, Lixia [1 ,2 ]
Wang, Suhua [1 ,2 ]
Cheng, Xuzhen [1 ,2 ]
机构
[1] Chinese Acad Agr Sci, Minist Agr, Key Lab Crop Germplasm Resources & Utilizat, Beijing 100081, Peoples R China
[2] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[3] China Agr Univ, State Key Lab Agrobiotechnol, Coll Biol Sci, Beijing 100193, Peoples R China
关键词
Vigna radiata; VrDREB2A; Transcription factor; Salt tolerance; Drought tolerance; RESPONSIVE GENE-EXPRESSION; ABIOTIC STRESS; FUNCTIONAL-ANALYSIS; OSMOTIC-STRESS; RICE; OVEREXPRESSION; SEQUENCE; ENCODES; CLONING; DOMAIN;
D O I
10.1007/s10265-015-0773-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Mung bean (Vigna radiata L.) is commonly grown in Asia as an important nutritional dry grain legume, as it can survive better in arid conditions than other crops. Abiotic stresses, such as drought and high-salt contents, negatively impact its growth and production. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors play a significant role in the response to these stress stimuli via transcriptional regulation of downstream genes containing the cis-element dehydration-responsive element (DRE). However, the molecular mechanisms involved in the drought tolerance of this species remain elusive, with very few reported candidate genes. No DREB2 ortholog has been reported for mung bean, and the function of mung bean DREB2 is not clear. In this study, a novel VrDREB2A gene with conserved AP2 domains and transactivation ability was isolated from mung bean. A modified VrDREB2A protein lacking the putative negative regulatory domain encoded by nucleotides 394-543 was shown to be localized in the nucleus. Expression of the VrDREB2A gene was induced by drought, high salt concentrations and abscisic acid treatment. Furthermore, comparing with the wild type Arabidopsis, the overexpression of VrDREB2A activated the expression of downstream genes in transgenic Arabidopsis, resulting in enhanced tolerance to drought and high-salt stresses and no growth retardation. The results from this study indicate that VrDREB2A functions as an important transcriptional activator and may help increase the abiotic stress tolerance of the mung bean plant.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 49 条
  • [21] A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Feibing
    Zhu, Hong
    Chen, Dahu
    Li, Zhenjun
    Peng, Rihe
    Yao, Quanhong
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 125 (02) : 387 - 398
  • [22] A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana
    Feibing Wang
    Hong Zhu
    Dahu Chen
    Zhenjun Li
    Rihe Peng
    Quanhong Yao
    Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125 : 387 - 398
  • [23] A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic Arabidopsis
    Zhu, Hong
    Zhou, Yuanyuan
    Zhai, Hong
    He, Shaozhen
    Zhao, Ning
    Liu, Qingchang
    BIOMOLECULES, 2020, 10 (04)
  • [24] BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis
    Zhao, Bi-Yan
    Hu, Yu-Feng
    Li, Juan-Juan
    Yao, Xuan
    Liu, Ke-de
    BOTANICAL STUDIES, 2016, 57
  • [25] BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis
    Bi-Yan Zhao
    Yu-Feng Hu
    Juan-juan Li
    Xuan Yao
    Ke-de Liu
    Botanical Studies, 57
  • [26] A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance
    Xiao-lan Li
    Xing Yang
    Yu-xin Hu
    Xiao-dong Yu
    Qiu-li Li
    Plant Cell Reports, 2014, 33 : 767 - 778
  • [27] A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance
    Li, Xiao-lan
    Yang, Xing
    Hu, Yu-xin
    Yu, Xiao-dong
    Li, Qiu-li
    PLANT CELL REPORTS, 2014, 33 (05) : 767 - 778
  • [28] The DREB A-5 Transcription Factor ScDREB5 From Syntrichia caninervis Enhanced Salt Tolerance by Regulating Jasmonic Acid Biosynthesis in Transgenic Arabidopsis
    Liu, Jinyuan
    Yang, Ruirui
    Liang, Yuqing
    Wang, Yan
    Li, Xiaoshuang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [29] PcWRKY11, an II-d WRKY Transcription Factor from Polygonum cuspidatum, Enhances Salt Tolerance in Transgenic Arabidopsis thaliana
    Wang, Guowei
    Wang, Xiaowei
    Ma, Hongping
    Fan, Haili
    Lin, Fan
    Chen, Jianhui
    Chai, Tuanyao
    Wang, Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (08)
  • [30] A novel Ap2/ERF transcription factor from Stipa purpurea leads to enhanced drought tolerance in Arabidopsis thaliana
    Yunqiang Yang
    Chao Dong
    Xiong Li
    Jiancan Du
    Min Qian
    Xudong Sun
    Yongping Yang
    Plant Cell Reports, 2016, 35 : 2227 - 2239