On Efficiency and Localisation for the Torsion Function

被引:4
作者
van den Berg, M. [1 ]
Bucur, D. [2 ]
Kappeler, T. [3 ]
机构
[1] Univ Bristol, Sch Math, Woodland Rd,Fry Bldg, Bristol BS8 1UG, Avon, England
[2] Univ Savoie Mont Blanc, UMR CNRS 5127, Lab Math, F-73376 Le Bourget Du Lac, France
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Torsion function; First Dirichlet eigenfunction; Schrodinger operator; Dirichlet boundary condition; Localisation; Efficiency; INEQUALITY; RIGIDITY;
D O I
10.1007/s11118-021-09928-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the torsion function for the Dirichlet Laplacian -Delta, and for the Schrodinger operator -Delta + V on an open set Omega subset of R-m of finite Lebesgue measure 0 < vertical bar Omega vertical bar < infinity with a real-valued, non-negative, measurable potential V. We investigate the efficiency and the phenomenon of localisation for the torsion function, and their interplay with the geometry of the first Dirichlet eigenfunction.
引用
收藏
页码:571 / 600
页数:30
相关论文
共 24 条
[11]   Geometrical Structure of Laplacian Eigenfunctions [J].
Grebenkov, D. S. ;
Nguyen, B. -T. .
SIAM REVIEW, 2013, 55 (04) :601-667
[12]   ON TWO FUNCTIONALS INVOLVING THE MAXIMUM OF THE TORSION FUNCTION [J].
Henrot, Antoine ;
Lucardesi, Ilaria ;
Philippin, Gerard .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) :1585-1604
[14]  
Payne L. E., 1973, Applicable Analysis, V3, P295, DOI 10.1080/00036817308839071
[15]  
Simon B., 1979, FUNCTIONAL INTEGRATI
[16]  
Sperb R, 1981, MAXIMUM PRINCIPLES A
[17]   LOCALIZATION FOR THE TORSION FUNCTION AND THE STRONG HARDY INEQUALITY [J].
van den Berg, M. ;
Kappeler, T. .
MATHEMATIKA, 2021, 67 (02) :514-531
[18]   Spectral Bounds for the Torsion Function [J].
van den Berg, M. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (03) :387-400
[19]   On Plya's Inequality for Torsional Rigidity and First Dirichlet Eigenvalue [J].
van den Berg, M. ;
Ferone, V. ;
Nitsch, C. ;
Trombetti, C. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (04) :579-600
[20]   Hardy inequality and Lp estimates for the torsion function [J].
van den Berg, M. ;
Carroll, Tom .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :980-986