On Efficiency and Localisation for the Torsion Function

被引:4
作者
van den Berg, M. [1 ]
Bucur, D. [2 ]
Kappeler, T. [3 ]
机构
[1] Univ Bristol, Sch Math, Woodland Rd,Fry Bldg, Bristol BS8 1UG, Avon, England
[2] Univ Savoie Mont Blanc, UMR CNRS 5127, Lab Math, F-73376 Le Bourget Du Lac, France
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Torsion function; First Dirichlet eigenfunction; Schrodinger operator; Dirichlet boundary condition; Localisation; Efficiency; INEQUALITY; RIGIDITY;
D O I
10.1007/s11118-021-09928-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the torsion function for the Dirichlet Laplacian -Delta, and for the Schrodinger operator -Delta + V on an open set Omega subset of R-m of finite Lebesgue measure 0 < vertical bar Omega vertical bar < infinity with a real-valued, non-negative, measurable potential V. We investigate the efficiency and the phenomenon of localisation for the torsion function, and their interplay with the geometry of the first Dirichlet eigenfunction.
引用
收藏
页码:571 / 600
页数:30
相关论文
共 24 条
[1]   Localization of eigenfunctions via an effective potential [J].
Arnold, Douglas N. ;
David, Guy ;
Filoche, Marcel ;
Jerison, David ;
Mayboroda, Svitlana .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (11) :1186-1216
[2]   COMPUTING SPECTRA WITHOUT SOLVING EIGENVALUE PROBLEMS [J].
Arnold, Douglas N. ;
David, Guy ;
Filoche, Marcel ;
Jerison, David ;
Mayboroda, Svitlana .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :B69-B92
[3]   The Torsion Function of Convex Domains of High Eccentricity [J].
Beck, Thomas .
POTENTIAL ANALYSIS, 2020, 53 (02) :701-726
[4]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[5]  
Bucur D., 2005, Variational methods in some shape optimization problems
[6]  
Cioranescu D., 1997, TOPICS MATH MODELLIN, V31, P45
[7]   WIENER CRITERION AND GAMMA-CONVERGENCE [J].
DALMASO, G ;
MOSCO, U .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (01) :15-63
[8]   On functionals involving the torsional rigidity related to some classes of nonlinear operators [J].
Della Pietra, Francesco ;
Gavitone, Nunzia ;
Lo Bianco, Serena Guarino .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) :6424-6442
[9]   ON THE OBSTACLE PROBLEM WITH A VOLUME CONSTRAINT [J].
EISEN, G .
MANUSCRIPTA MATHEMATICA, 1983, 43 (01) :73-83
[10]   Principal Eigenvalue Estimates via the Supremum of Torsion [J].
Giorgi, Tiziana ;
Smits, Robert G. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) :987-1011