Svetlichny's inequality and genuine tripartite nonlocality in three-qubit pure states

被引:43
作者
Ajoy, Ashok [1 ,2 ]
Rungta, Pranaw [2 ,3 ]
机构
[1] Birla Inst Technol & Sci Pilani, Zuarinagar 403726, Goa, India
[2] Indian Inst Sci, NMR Res Ctr, Bangalore 560012, Karnataka, India
[3] IISER Mohali, Chandigarh 160019, India
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 05期
关键词
QUANTUM; ENTANGLEMENT;
D O I
10.1103/PhysRevA.81.052334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The violation of the Svetlichny's inequality (SI) [Phys. Rev. D 35, 3066 (1987)] is sufficient but not necessary for genuine tripartite nonlocal correlations. Here we quantify the relationship between tripartite entanglement and the maximum expectation value of the Svetlichny operator (which is bounded from above by the inequality) for the two inequivalent subclasses of pure three-qubit states: the Greenberger-Horne-Zeilinger (GHZ) class and the W class. We show that the maximum for the GHZ-class states reduces to Mermin's inequality [Phys. Rev. Lett. 65, 1838 (1990)] modulo a constant factor, and although it is a function of the three tangle and the residual concurrence, large numbers of states do not violate the inequality. We further show that by design SI is more suitable as a measure of genuine tripartite nonlocality between the three qubits in the W-class states, and the maximum is a certain function of the bipartite entanglement (the concurrence) of the three reduced states, and only when their sum attains a certain threshold value do they violate the inequality.
引用
收藏
页数:4
相关论文
共 24 条
  • [1] [Anonymous], PHYS QUANTUM INFORM
  • [2] Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
  • [3] Observation of three-photon Greenberger-Horne-Zeilinger entanglement
    Bouwmeester, D
    Pan, JW
    Daniell, M
    Weinfurter, H
    Zeilinger, A
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (07) : 1345 - 1349
  • [4] Three-particle entanglement versus three-particle nonlocality
    Cereceda, JL
    [J]. PHYSICAL REVIEW A, 2002, 66 (02): : 4
  • [5] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [6] Cirel'son B.S., 1987, J. Math. Sci., V36, P557, DOI DOI 10.1007/BF01663472
  • [7] QUANTUM GENERALIZATIONS OF BELLS-INEQUALITY
    CIRELSON, BS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1980, 4 (02) : 93 - 106
  • [8] PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES
    CLAUSER, JF
    HORNE, MA
    SHIMONY, A
    HOLT, RA
    [J]. PHYSICAL REVIEW LETTERS, 1969, 23 (15) : 880 - &
  • [9] Distributed entanglement
    Coffman, V
    Kundu, J
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 5
  • [10] Bell-type inequalities to detect true n-body nonseparability -: art. no. 170405
    Collins, D
    Gisin, N
    Popescu, S
    Roberts, D
    Scarani, V
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 1704051 - 1704054