Modified Bernstein-Kantorovich Operators Reproducing Affine Functions

被引:1
作者
Zhang, Bin [1 ]
Yu, Dansheng [1 ]
Wang, Fengfeng [1 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
关键词
STANCU POLYNOMIALS; APPROXIMATION; FAMILY;
D O I
10.2298/FIL2218187Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce a new variant of Bernstein-Kantorovich operators which reproduce affine functions. The approximation rate of the new operators for continuous functions and Voronovskaja's asymptotic estimate are obtained.
引用
收藏
页码:6187 / 6195
页数:9
相关论文
共 48 条
  • [21] On Kantorovich Variant of Baskakov Type Operators Preserving Some Functions
    Ansari, Khursheed J.
    FILOMAT, 2022, 36 (03) : 1049 - 1060
  • [22] CONSTRUCTION OF THE KANTOROVICH VARIANT OF THE BERNSTEIN-CHLODOVSKY OPERATORS BASED ON PARAMETER α
    Lian, Bo-Yong
    Cai, Qing-Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 797 - 810
  • [23] Bernstein-Schurer-Kantorovich operators based on q-integers
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 222 - 231
  • [24] Bezier variant of modified α-Bernstein operators
    Agrawal, P. N.
    Bhardwaj, Neha
    Bawa, Parveen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 807 - 827
  • [25] A Kantorovich Type Integral Modification of q- Bernstein-Schurer Operators
    Gairola, Asha Ram
    Mishra, Vishnu Narayan
    Singh, Karunesh Kumar
    FILOMAT, 2018, 32 (04) : 1335 - 1348
  • [26] Linking of Bernstein-Chlodowsky and Szasz-Appell-Kantorovich type operators
    Agrawal, P. N.
    Kumar, Dharmendra
    Araci, Serkan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3288 - 3302
  • [27] A Class of Modified Bernstein-Durrmeyer Operators
    Zhao, Jianwei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 208 - 217
  • [28] GBS operators of Bernstein-Schurer-Kantorovich type based on q-integers
    Sidharth, Manjari
    Ispir, Nurhayat
    Agrawal, P. N.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 558 - 568
  • [29] Neural network Kantorovich operators activated by smooth ramp functions
    Agrawal, Purshottam N.
    Baxhaku, Behar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 563 - 589
  • [30] Lupas-Kantorovich Type Operators for Functions of Two Variables
    Agrawal, P. N.
    Kumar, Abhishek
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 17 - 36