Antispiral waves in reaction-diffusion systems

被引:101
作者
Gong, YF [1 ]
Christini, DJ
机构
[1] Cornell Univ, Weill Med Coll, Dept Med, Div Cardiol, New York, NY 10021 USA
[2] Cornell Univ, Weill Grad Sch Med Sci, Dept Physiol & Biophys, New York, NY 10021 USA
关键词
D O I
10.1103/PhysRevLett.90.088302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report spontaneous antispiral wave formation in typical reaction-diffusion systems. Our findings qualitatively reproduce a series of phenomena recently observed in a Belousov-Zhabotinsky-type chemical reaction. We found that antispiral waves can occur only near the Hopf bifurcation, when the system is characterized by small amplitude oscillatory (as opposed to excitable) dynamics. For reaction-diffusion systems in the vicinity of the Hopf bifurcation, the specific conditions required for antispiral formation are established here through theoretical analyses and numerical simulations. Thus, this work provides a comprehensive description of the mechanisms underlying antispiral waves in reaction-diffusion systems.
引用
收藏
页数:4
相关论文
共 24 条
[1]  
[Anonymous], 1985, Oscillations and Travelling Waves in Chemical Systems
[2]   Drift of spiral waves in the complex Ginzburg-Landau equation due to media inhomogeneities [J].
Biktasheva, IV .
PHYSICAL REVIEW E, 2000, 62 (06) :8800-8803
[3]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[4]   OSCILLATIONS IN CHEMICAL SYSTEMS .2. THOROUGH ANALYSIS OF TEMPORAL OSCILLATION IN BROMATE-CERIUM-MALONIC ACID SYSTEM [J].
FIELD, RJ ;
NOYES, RM ;
KOROS, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1972, 94 (25) :8649-&
[5]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[6]   SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS [J].
HAGAN, PS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) :762-786
[7]   Amplitude equations and chemical reaction-diffusion systems [J].
Ipsen, M ;
Hynne, F ;
Sorensen, PG .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07) :1539-1554
[8]   Amplitude equations for description of chemical reaction-diffusion systems [J].
Ipsen, M ;
Kramer, L ;
Sorensen, PG .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (1-2) :193-235
[9]   A GEOMETRICAL-THEORY FOR SPIRAL WAVES IN EXCITABLE MEDIA [J].
KEENER, JP .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (06) :1039-1056
[10]  
Komineas S, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.011103