Modulational Instability and Bright Discrete Solitons in Zigzag Optical Waveguide Array with Nonlinear Coupling

被引:0
作者
Yao Ying-bo [1 ]
Xie Jia-yu [2 ]
Yin Fen-fen [3 ]
Tang Bing [2 ]
机构
[1] Hunan City Univ, Coll Informat & Elect Engn, Yiyang 413000, Hunan, Peoples R China
[2] Jishou Univ, Coll Phys Mech & Elect Engn, Jishou 416000, Hunan, Peoples R China
[3] Tongren Univ, Sch Data Sci, Tongren 554300, Guizhou, Peoples R China
关键词
Nonlinear optics; Optical waveguide; Zigzag lattice; Nonlinear coupling; Modulational instability; Bright soliton; BREATHERS; MODES;
D O I
10.3788/gzxb20194808.0819001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By the use of a linear stability analysis, the analytic expression for the growth rate of the disperse modulational instability in the zigzag optical waveguide array with nonlinear coupling is got, and the influence of the nonlinear coupling on the modulational instability region for different values of the next-nearest-neighbor coupling coefficient is analyzed. The results indicate that varying the value of the nonlinear coupling parameter can evidently affect the shape of the modulational instability area. According to the result from the modulational instability analysis, the existence conditions of bright discrete solitons are predicted. Furthermore, analytical solutions for the bright discrete solitons in the present zigzag optical waveguide array are obtained by the multi-scale method. What is more, the existence conditions of such bright discrete solitons are discussed, which are manifested to be in agreement with the modulational instability analysis.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation [J].
Abdullaev, F. Kh. ;
Bouketir, A. ;
Messikh, A. ;
Umarov, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :54-61
[2]   Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity [J].
Abdullaev, Fatkhulla Kh ;
Salerno, Mario .
PHYSICAL REVIEW E, 2018, 97 (05)
[3]   Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays [J].
Aceves, AB ;
DeAngelis, C ;
Peschel, T ;
Muschall, R ;
Lederer, F ;
Trillo, S ;
Wabnitz, S .
PHYSICAL REVIEW E, 1996, 53 (01) :1172-1189
[4]   Interaction potential between discrete solitons in waveguide arrays [J].
Al Khawaja, U. ;
Al-Marzoug, S. M. ;
Bahlouli, H. ;
Baizakov, B. .
OPTICS EXPRESS, 2016, 24 (16) :18148-18162
[5]   Exploiting discreteness for switching in waveguide arrays [J].
Bang, O ;
Miller, PD .
OPTICS LETTERS, 1996, 21 (15) :1105-1107
[6]   Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrodinger equation with higher-order effects [J].
Cai, Liu-Ying ;
Wang, Xin ;
Wang, Lei ;
Li, Min ;
Liu, Yong ;
Shi, Yu-Ying .
NONLINEAR DYNAMICS, 2017, 90 (03) :2221-2230
[7]   Modulation instability in a zigzag array of nonlinear waveguides with alternating positive and negative refractive indices [J].
Dovgiy, A. A. .
QUANTUM ELECTRONICS, 2014, 44 (12) :1119-1128
[8]   Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties [J].
Efremidis, Nikos K. ;
Christodoulides, Demetrios N. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05) :1-056607
[9]   Discrete spatial optical solitons in waveguide arrays [J].
Eisenberg, HS ;
Silberberg, Y ;
Morandotti, R ;
Boyd, AR ;
Aitchison, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3383-3386
[10]   Discrete breathers - Advances in theory and applications [J].
Flach, Sergej ;
Gorbach, Andrey V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3) :1-116