Safe Learning for Uncertainty-Aware Planning via Interval MDP Abstraction

被引:10
作者
Jiang, Jesse [1 ]
Zhao, Ye [2 ]
Coogan, Samuel [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
美国国家科学基金会;
关键词
Uncertainty; Stochastic systems; Gaussian processes; Planning; Markov processes; Automata; Process control; hybrid systems; Gaussian process learning;
D O I
10.1109/LCSYS.2022.3173993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of refining satisfiability bounds for partially-known stochastic systems against planning specifications defined using syntactically co-safe Linear Temporal Logic (scLTL). We propose an abstraction-based approach that iteratively generates high-confidence Interval Markov Decision Process (IMDP) abstractions of the system from high-confidence bounds on the unknown component of the dynamics obtained via Gaussian process regression. In particular, we develop a synthesis strategy to sample the unknown dynamics by finding paths which avoid specification-violating states using a product IMDP. We further provide a heuristic to choose among various candidate paths to maximize the information gain. Finally, we propose an iterative algorithm to synthesize a satisfying control policy for the product IMDP system. We demonstrate our work with a case study on mobile robot navigation.
引用
收藏
页码:2641 / 2646
页数:6
相关论文
共 16 条
[1]  
Ahmadi Mohamadreza, 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), P6409, DOI 10.1109/CDC.2017.8264626
[2]  
Akametalu AK, 2014, IEEE DECIS CONTR P, P1424, DOI 10.1109/CDC.2014.7039601
[3]   Congestion control as a stochastic control problem with action delays [J].
Altman, E ;
Basar, T ;
Srikant, R .
AUTOMATICA, 1999, 35 (12) :1937-1950
[4]  
[Anonymous], 2009, Verification and Control of Hybrid Systems: A Symbolic Approach
[5]  
Baier C, 2008, PRINCIPLES OF MODEL CHECKING, P1
[6]   Model-checking algorithms for continuous-time Markov chains [J].
Baier, C ;
Haverkort, B ;
Hermanns, H ;
Katoen, JP .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2003, 29 (06) :524-541
[7]  
Belta C, 2017, STUD SYST DECIS CONT, V89, P1, DOI 10.1007/978-3-319-50763-7
[8]   Developing early childhood educators with diverse qualifications: the need for differentiated approaches [J].
Jackson, Jen .
PROFESSIONAL DEVELOPMENT IN EDUCATION, 2023, 49 (05) :812-826
[9]   Stochastic modeling and control of biological systems:: The lactose regulation system of Escherichia coli [J].
Julius, A. Agung ;
Halasz, Adain ;
Sakar, M. Selman ;
Rubin, Harvey ;
Kumar, Vijay ;
Pappas, George J. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 :51-65
[10]   Formal Verification and Synthesis for Discrete-Time Stochastic Systems [J].
Lahijanian, Morteza ;
Andersson, Sean B. ;
Belta, Calin .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (08) :2031-2045