We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
机构:
Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Baranski, Krzysztof
Fagella, Nuria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Dept Matemat & Informat, Barcelona Grad Sch Math BGSMath, Gran Via 585, E-08007 Barcelona, Catalonia, SpainUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Fagella, Nuria
Jarque, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Dept Matemat & Informat, Barcelona Grad Sch Math BGSMath, Gran Via 585, E-08007 Barcelona, Catalonia, SpainUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Jarque, Xavier
Karpinska, Boguslawa
论文数: 0引用数: 0
h-index: 0
机构:
Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, PolandUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
机构:
BUAP Col San Manuel, Fac Ciencias Fisico Matemat, Puebla Pue 72570, MexicoBUAP Col San Manuel, Fac Ciencias Fisico Matemat, Puebla Pue 72570, Mexico
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Wang, Jun
Yao, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R China
Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China