The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x, Q2) and transversity

被引:78
作者
Ablinger, J. [1 ]
Behring, A. [2 ]
Bluemlein, J. [2 ]
De Freitas, A. [2 ]
Hasselhuhn, A. [1 ]
von Manteuffel, A. [3 ,4 ]
Round, M. [1 ,2 ]
Schneider, C. [1 ]
Wissbrock, F. [1 ,2 ]
机构
[1] Johannes Kepler Univ Linz, Symbol Computat Res Inst, A-4040 Linz, Austria
[2] DESY, D-15738 Zeuthen, Germany
[3] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
基金
奥地利科学基金会;
关键词
DEEP-INELASTIC-SCATTERING; OPERATOR MATRIX-ELEMENTS; TO-LEADING ORDER; MULTILOOP FEYNMAN-INTEGRALS; ASYMPTOTIC VALUES Q(2); HARMONIC SUMS; ANALYTIC CONTINUATION; MELLIN TRANSFORMS; NUMERICAL EVALUATION; NUMBER SCHEME;
D O I
10.1016/j.nuclphysb.2014.07.010
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the massive flavor non-singlet Wilson coefficient for the heavy flavor contributions to the structure function F-2(x, Q(2)) in the asymptotic region Q(2) >> m(2) and the associated operator matrix element A(qq,Q)((3),NS) (N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This matrix element is associated with the vector current and axial vector current for the even and the odd moments N, respectively. We also calculate the corresponding operator matrix elements for transversity, compute the contributions to the 3-loop anomalous dimensions to O(N-F) and compare to results in the literature. The 3-loop matching of the flavor non-singlet distribution in the variable flavor number scheme is derived. All results can be expressed in terms of nested harmonic sums in N space and harmonic poly-logarithms in x-space. Numerical results are presented for the non-singlet charm quark contribution to F-2(x, Q(2)). (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
引用
收藏
页码:733 / 823
页数:91
相关论文
共 137 条
  • [11] Modern Summation Methods and the Computation of 2-and 3-loop Feynman Diagrams
    Ablinger, Jakob
    Bluemlein, Johannes
    Klein, Sebastian
    Schneider, Carsten
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 205-06 : 110 - 115
  • [12] Accardi A., ARXIV12121701NUCLEX
  • [13] Ajaltouni Z.J., ARXIV09033861HEPPH
  • [14] The ABM parton distributions tuned to LHC data
    Alekhin, S.
    Bluemlein, J.
    Moch, S.
    [J]. PHYSICAL REVIEW D, 2014, 89 (05)
  • [15] Precise charm-quark mass from deep-inelastic scattering
    Alekhin, S.
    Bluemlein, J.
    Daum, K.
    Lipka, K.
    Moch, S.
    [J]. PHYSICS LETTERS B, 2013, 720 (1-3) : 172 - 176
  • [16] Parton distribution functions and benchmark cross sections at next-to-next-to-leading order
    Alekhin, S.
    Bluemlein, J.
    Moch, S.
    [J]. PHYSICAL REVIEW D, 2012, 86 (05):
  • [17] Alekhin S., ARXIVHEPPH0601013
  • [18] ALEKHIN S, ARXIVHEPPH0601012
  • [19] Mellin representation for the heavy flavor contributions to deep inelastic structure functions
    Alekhin, SI
    Blümlein, J
    [J]. PHYSICS LETTERS B, 2004, 594 (3-4) : 299 - 307
  • [20] Anastasiou C, 2004, J HIGH ENERGY PHYS