The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x, Q2) and transversity

被引:78
作者
Ablinger, J. [1 ]
Behring, A. [2 ]
Bluemlein, J. [2 ]
De Freitas, A. [2 ]
Hasselhuhn, A. [1 ]
von Manteuffel, A. [3 ,4 ]
Round, M. [1 ,2 ]
Schneider, C. [1 ]
Wissbrock, F. [1 ,2 ]
机构
[1] Johannes Kepler Univ Linz, Symbol Computat Res Inst, A-4040 Linz, Austria
[2] DESY, D-15738 Zeuthen, Germany
[3] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
基金
奥地利科学基金会;
关键词
DEEP-INELASTIC-SCATTERING; OPERATOR MATRIX-ELEMENTS; TO-LEADING ORDER; MULTILOOP FEYNMAN-INTEGRALS; ASYMPTOTIC VALUES Q(2); HARMONIC SUMS; ANALYTIC CONTINUATION; MELLIN TRANSFORMS; NUMERICAL EVALUATION; NUMBER SCHEME;
D O I
10.1016/j.nuclphysb.2014.07.010
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the massive flavor non-singlet Wilson coefficient for the heavy flavor contributions to the structure function F-2(x, Q(2)) in the asymptotic region Q(2) >> m(2) and the associated operator matrix element A(qq,Q)((3),NS) (N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This matrix element is associated with the vector current and axial vector current for the even and the odd moments N, respectively. We also calculate the corresponding operator matrix elements for transversity, compute the contributions to the 3-loop anomalous dimensions to O(N-F) and compare to results in the literature. The 3-loop matching of the flavor non-singlet distribution in the variable flavor number scheme is derived. All results can be expressed in terms of nested harmonic sums in N space and harmonic poly-logarithms in x-space. Numerical results are presented for the non-singlet charm quark contribution to F-2(x, Q(2)). (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
引用
收藏
页码:733 / 823
页数:91
相关论文
共 137 条
  • [1] The O (αS3TF2) contributions to the gluonic operator matrix element
    Ablinger, J.
    Bluemlein, J.
    De Freitas, A.
    Hasselhuhn, A.
    von Manteuffel, A.
    Round, M.
    Schneider, C.
    [J]. NUCLEAR PHYSICS B, 2014, 885 : 280 - 317
  • [2] The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3)
    Ablinger, J.
    Bluemlein, J.
    De Freitas, A.
    Hasselhuhn, A.
    von Manteuffel, A.
    Round, M.
    Schneider, C.
    Wissbrock, F.
    [J]. NUCLEAR PHYSICS B, 2014, 882 : 263 - 288
  • [3] The O (αs3) massive operator matrix elements of O(n f) for the structure function F2(x, Q2) and transversity
    Ablinger, J.
    Bluemlein, J.
    Klein, S.
    Schneider, C.
    Wissbrock, F.
    [J]. NUCLEAR PHYSICS B, 2011, 844 (01) : 26 - 54
  • [4] Ablinger J., ARXIV13050687MATHPH
  • [5] Ablinger J., ARXIV10111176MATHPH
  • [6] Ablinger J., 2011, RADCOR2011 POS
  • [7] Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
    Ablinger, Jakob
    Bluemlein, Johannes
    Raab, Clemens
    Schneider, Carsten
    Wissbrock, Fabian
    [J]. NUCLEAR PHYSICS B, 2014, 885 : 409 - 447
  • [8] Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
    Ablinger, Jakob
    Bluemlein, Johannes
    Schneider, Carsten
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [9] Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
    Ablinger, Jakob
    Bluemlein, Johannes
    Hasselhuhn, Alexander
    Klein, Sebastian
    Schneider, Carsten
    Wissbrock, Fabian
    [J]. NUCLEAR PHYSICS B, 2012, 864 (01) : 52 - 84
  • [10] Harmonic sums and polylogarithms generated by cyclotomic polynomials
    Ablinger, Jakob
    Bluemlein, Johannes
    Schneider, Carsten
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (10)