On the Diophantine equation 1k+2k +...+ xk = yn

被引:33
|
作者
Bennett, MA [1 ]
Gyory, K
Pintér, A
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Debrecen, Math Inst, H-4010 Debrecen, Hungary
关键词
Diophantine equations; Bernoulli polynomials;
D O I
10.1112/S0010437X04000508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we resolve a conjecture of Schaffer on the solvability of Diophantine equations of the shape 1(k) + 2(k) +... + x(k) = y(n), for 1 less than or equal to k less than or equal to 11. Our method, which may, with a modicum of effort, be extended to higher values of k, combines a wide variety of techniques, classical and modern, in Diophantine analysis.
引用
收藏
页码:1417 / 1431
页数:15
相关论文
共 50 条
  • [1] On the equation 1k+2k + ... + xk=yn
    Györy, K
    Pintér, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 403 - 414
  • [2] On some generalizations of the diophantine equation s(1k+2k + ... + xk) + r = dyn
    Rakaczki, Csaba
    ACTA ARITHMETICA, 2012, 151 (02) : 201 - 216
  • [3] On the Diophantine equation (x-1)k + xk + (x+1)k = yn
    Zhang, Zhongfeng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 93 - 100
  • [4] On the diophantine equation x2+q2k+1=yn
    Arif, SA
    Abu Muriefah, FS
    JOURNAL OF NUMBER THEORY, 2002, 95 (01) : 95 - 100
  • [5] On the Diophantine equation (x+1)k (x+2)k + . . . plus (lx)k = yn
    Soydan, Gokhan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 369 - 382
  • [6] The Diophantine equation (x+1)k + (x+2)k + ... plus (lx)k = yn revisted
    Bartoli, Daniele
    Soydan, Gokhan
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 96 (1-2): : 111 - 120
  • [7] The Diophantine equation α(xm) + β(yn)= γ
    Stoll, T
    Tichy, RF
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (1-2): : 155 - 165
  • [8] On the Lucas sequence equation 1/Un = Σk=1∞ Uk-1/xk
    Tengely, Szabolcs
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (02) : 236 - 242
  • [9] A computational approach for solving y2=1k+2k+•••+xk
    Jacobson, MJ
    Pintér, A
    Walsh, PG
    MATHEMATICS OF COMPUTATION, 2003, 72 (244) : 2099 - 2110
  • [10] On the Diophantine equation x2+3a41b = yn
    Alan, Murat
    Zengin, Ugur
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (02) : 284 - 291