On the Diophantine equation 1k+2k +...+ xk = yn

被引:33
作者
Bennett, MA [1 ]
Gyory, K
Pintér, A
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Debrecen, Math Inst, H-4010 Debrecen, Hungary
关键词
Diophantine equations; Bernoulli polynomials;
D O I
10.1112/S0010437X04000508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we resolve a conjecture of Schaffer on the solvability of Diophantine equations of the shape 1(k) + 2(k) +... + x(k) = y(n), for 1 less than or equal to k less than or equal to 11. Our method, which may, with a modicum of effort, be extended to higher values of k, combines a wide variety of techniques, classical and modern, in Diophantine analysis.
引用
收藏
页码:1417 / 1431
页数:15
相关论文
共 34 条
[1]   THE SQUARE PYRAMID PUZZLE [J].
ANGLIN, WS .
AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (02) :120-124
[2]   Ternary Diophantine equations of signature (p, p, 3) [J].
Bennett, MA ;
Vatsal, V ;
Yazdani, S .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1399-1416
[3]   Products of consecutive integers [J].
Bennett, MA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :683-694
[4]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[5]  
Bennett MA, 2001, J REINE ANGEW MATH, V535, P1
[6]   ON SOME GENERALIZATIONS OF THE DIOPHANTINE EQUATION [J].
BRINDZA, B .
ACTA ARITHMETICA, 1984, 44 (02) :99-107
[7]  
Cremona J.E., 1992, ALGORITHMS MODULAR E
[8]   AN ELEMENTARY SOLUTION OF LUCAS PROBLEM [J].
CUCUREZEANU, I .
JOURNAL OF NUMBER THEORY, 1993, 44 (01) :9-12
[9]  
Dickson L. E., 1920, HIST THEORY NUMBERS, VII
[10]  
DICKSON LE, 1923, HIST THEORY NUMBERS, V3