CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice

被引:108
|
作者
Ohmori, Tsukasa [1 ]
Nagao, Yasumitsu [2 ]
Mizukami, Hiroaki [3 ]
Sakata, Asuka [4 ]
Muramatsu, Shin-ichi [5 ]
Ozawa, Keiya
Tominaga, Shin-ichi [1 ,6 ]
Hanazono, Yutaka [6 ,7 ]
Nishimura, Satoshi [4 ,8 ,9 ]
Nureki, Osamu [10 ]
Sakata, Yoichi [4 ]
机构
[1] Jichi Med Univ, Sch Med, Dept Biochem, Shimotsuke, Tochigi 3290498, Japan
[2] Jichi Med Univ, Ctr Expt Med, Dept Biochem, Shimotsuke, Tochigi 3290498, Japan
[3] Jichi Med Univ, Ctr Mol Med, Div Genet Therapeut, Shimotsuke, Tochigi 3290498, Japan
[4] Jichi Med Univ, Ctr Mol Med, Div Cell & Mol Med, Shimotsuke, Tochigi 3290498, Japan
[5] Jichi Med Univ, Sch Med, Dept Neurol, Shimotsuke, Tochigi 3290498, Japan
[6] Univ Tokyo, Inst Med Sci, Tokyo 1080071, Japan
[7] Jichi Med Univ, Ctr Mol Med, Div Regenerat Med, Shimotsuke, Tochigi 3290498, Japan
[8] Univ Tokyo, Dept Cardiovasc Med, Tokyo 1138655, Japan
[9] Univ Tokyo, Translat Syst Biol & Med Initiat, Tokyo 1138655, Japan
[10] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130032, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
MOUSE MODEL; CRISPR-CAS; GENE; HEMOSTASIS; INHIBITION; EXPRESSION; EFFICIENCY; MUSCLE; LIVER; ZFN;
D O I
10.1038/s41598-017-04625-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Heritable CRISPR/Cas9-Mediated Genome Editing in the Yellow Fever Mosquito, Aedes aegypti
    Dong, Shengzhang
    Lin, Jingyi
    Held, Nicole L.
    Clem, Rollie J.
    Passarelli, A. Lorena
    Franz, Alexander W. E.
    PLOS ONE, 2015, 10 (03):
  • [32] Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland
    Annunziato, Stefano
    Kas, Sjors M.
    Nethe, Micha
    Yucel, Hatice
    Del Bravo, Jessica
    Pritchard, Colin
    Bin Ali, Rahmen
    van Gerwen, Bas
    Siteur, Bjorn
    Drenth, Anne Paulien
    Schut, Eva
    van de Ven, Marieke
    Boelens, Mirjam C.
    Klarenbeek, Sjoerd
    Huijbers, Ivo J.
    van Miltenburg, Martine H.
    Jonkers, Jos
    GENES & DEVELOPMENT, 2016, 30 (12) : 1470 - 1480
  • [33] Fludarabine increases nuclease-free AAV- and CRISPR/Cas9-mediated homologous recombination in mice
    Tsuji, Shinnosuke
    Stephens, Calvin J.
    Bortolussi, Giulia
    Zhang, Feijie
    Baj, Gabriele
    Jang, Hagoon
    de Alencastro, Gustavo
    Muro, Andres F.
    Pekrun, Katja
    Kay, Mark A.
    NATURE BIOTECHNOLOGY, 2022, 40 (08) : 1285 - +
  • [34] Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery
    Andersson, Mariette
    Turesson, Helle
    Olsson, Niklas
    Falt, Ann-Sofie
    Ohlsson, Pia
    Gonzalez, Matias N.
    Samuelsson, Mathias
    Hofvander, Per
    PHYSIOLOGIA PLANTARUM, 2018, 164 (04) : 378 - 384
  • [35] Inducible Genome Editing with Conditional CRISPR/Cas9 Mice
    Katigbak, Alexandra
    Robert, Francis
    Paquet, Marilene
    Pelletier, Jerry
    G3-GENES GENOMES GENETICS, 2018, 8 (05): : 1627 - 1635
  • [36] CRISPR/Cas9-Mediated miR-29b Editing as a Treatment of Different Types of Muscle Atrophy in Mice
    Li, Jin
    Wang, Lijun
    Hua, Xuejiao
    Tang, Haifei
    Chen, Rui
    Yang, Tingting
    Das, Saumya
    Xiao, Junjie
    MOLECULAR THERAPY, 2020, 28 (05) : 1359 - 1372
  • [37] CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in mice
    Lu, Yonggang
    Oura, Seiya
    Matsumura, Takafumi
    Oji, Asami
    Sakurai, Nobuyuki
    Fujihara, Yoshitaka
    Shimada, Keisuke
    Miyata, Haruhiko
    Tobita, Tomohiro
    Noda, Taichi
    Castaneda, Julio M.
    Kiyozumi, Daiji
    Zhang, Qian
    Larasati, Tamara
    Young, Samantha A. M.
    Kodani, Mayo
    Huddleston, Caitlin A.
    Robertson, Matthew J.
    Coarfa, Cristian
    Isotani, Ayako
    Aitken, R. John
    Okabe, Masaru
    Matzuk, Martin M.
    Garcia, Thomas X.
    Ikawa, Masahito
    BIOLOGY OF REPRODUCTION, 2019, 101 (02) : 501 - 511
  • [38] Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome
    Wang, Jie
    Wu, Huaitong
    Chen, Yingnan
    Yin, Tongming
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [39] CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus
    Okuzaki, Ayako
    Ogawa, Takumi
    Koizuka, Chie
    Kaneko, Kanako
    Inaba, Mizue
    Imamura, Jun
    Koizuka, Nobuya
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 63 - 69
  • [40] CRISPR/Cas9-mediated efficient white genome editing in the black soldier fly Hermetia illucens
    Sui, Zhuoxiao
    Wu, Qi
    Geng, Jin
    Xiao, Jinhua
    Huang, Dawei
    MOLECULAR GENETICS AND GENOMICS, 2024, 299 (01)