CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice

被引:108
|
作者
Ohmori, Tsukasa [1 ]
Nagao, Yasumitsu [2 ]
Mizukami, Hiroaki [3 ]
Sakata, Asuka [4 ]
Muramatsu, Shin-ichi [5 ]
Ozawa, Keiya
Tominaga, Shin-ichi [1 ,6 ]
Hanazono, Yutaka [6 ,7 ]
Nishimura, Satoshi [4 ,8 ,9 ]
Nureki, Osamu [10 ]
Sakata, Yoichi [4 ]
机构
[1] Jichi Med Univ, Sch Med, Dept Biochem, Shimotsuke, Tochigi 3290498, Japan
[2] Jichi Med Univ, Ctr Expt Med, Dept Biochem, Shimotsuke, Tochigi 3290498, Japan
[3] Jichi Med Univ, Ctr Mol Med, Div Genet Therapeut, Shimotsuke, Tochigi 3290498, Japan
[4] Jichi Med Univ, Ctr Mol Med, Div Cell & Mol Med, Shimotsuke, Tochigi 3290498, Japan
[5] Jichi Med Univ, Sch Med, Dept Neurol, Shimotsuke, Tochigi 3290498, Japan
[6] Univ Tokyo, Inst Med Sci, Tokyo 1080071, Japan
[7] Jichi Med Univ, Ctr Mol Med, Div Regenerat Med, Shimotsuke, Tochigi 3290498, Japan
[8] Univ Tokyo, Dept Cardiovasc Med, Tokyo 1138655, Japan
[9] Univ Tokyo, Translat Syst Biol & Med Initiat, Tokyo 1138655, Japan
[10] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130032, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
MOUSE MODEL; CRISPR-CAS; GENE; HEMOSTASIS; INHIBITION; EXPRESSION; EFFICIENCY; MUSCLE; LIVER; ZFN;
D O I
10.1038/s41598-017-04625-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Progress and Updates of CRISPR/Cas9-Mediated Genome Editing on Abiotic Stress Tolerance in Agriculture: A Review
    Murugavelu, Girija Sangari
    Chandar, S. R. Harish
    Sakthivel, Surya Krishna
    Ramaswamy, Manimekalai
    Swaminathan, Amutha
    Chinnaswamy, Appunu
    SUGAR TECH, 2025, 27 (01) : 29 - 43
  • [22] CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion
    Mou, Haiwei
    Smith, Jordan L.
    Peng, Lingtao
    Yin, Hao
    Moore, Jill
    Zhang, Xiao-Ou
    Song, Chun-Qing
    Sheel, Ankur
    Wu, Qiongqiong
    Ozata, Deniz M.
    Li, Yingxiang
    Anderson, Daniel G.
    Emerson, Charles P.
    Sontheimer, Erik J.
    Moore, Melissa J.
    Weng, Zhiping
    Xue, Wen
    GENOME BIOLOGY, 2017, 18
  • [23] Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
    Long, Chengzu
    McAnally, John R.
    Shelton, John M.
    Mireault, Alex A.
    Bassel-Duby, Rhonda
    Olson, Eric N.
    SCIENCE, 2014, 345 (6201) : 1184 - 1188
  • [24] An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing
    Lanza, Denise G.
    Mao, Jianqiang
    Lorenzo, Isabel
    Liao, Lan
    Seavitt, John R.
    Ljungberg, M. Cecilia
    Simpson, Elizabeth M.
    Demayo, Francesco J.
    Heaney, Jason D.
    GENESIS, 2024, 62 (02)
  • [25] CRISPR/Cas9-mediated genome editing in vancomycin-producing strain Amycolatopsis keratiniphila
    Hu, Mengyi
    Chen, Shuo
    Ni, Yao
    Wei, Wei
    Mao, Wenwei
    Ge, Mei
    Qian, Xiuping
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [26] GFP to BFP Conversion: A Versatile Assay for the Quantification of CRISPR/Cas9-mediated Genome Editing
    Glaser, Astrid
    McColl, Bradley
    Vadolas, Jim
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2016, 5
  • [27] y Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis
    Liu, Yu
    Wang, Yu
    Xu, Shuqing
    Tang, Xianfeng
    Zhao, Jinshan
    Yu, Changjiang
    He, Guo
    Xu, Hua
    Wang, Shumin
    Tang, Yali
    Fu, Chunxiang
    Ma, Yubin
    Zhou, Gongke
    PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (11) : 2143 - 2152
  • [28] A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast
    Zhang, Xiao-Ran
    He, Jia-Bei
    Wang, Yi-Zheng
    Du, Li-Lin
    G3-GENES GENOMES GENETICS, 2018, 8 (06): : 2067 - 2077
  • [29] CRISPR/Cas9-mediated genome editing assists protein dynamics studies in live cells
    Carrasco-Padilla, Carlos
    Roda-Navarro, Pedro
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2022, 101 (02)
  • [30] CRISPR/Cas9-mediated genome editing of splicing mutation causing congenital hearing loss
    Ryu, Nari
    Kim, Min-A
    Choi, Deok-Gyun
    Kim, Ye-Ri
    Sonn, Jong Kyung
    Lee, Kyu-Yup
    Kim, Un-Kyung
    GENE, 2019, 703 : 83 - 90