Compositional Simulation of Geological and Engineering Controls on Gas Huff-n-Puff in Duvernay Shale Volatile Oil Reservoirs, Canada

被引:7
作者
Kong, Xiangwen [1 ]
Wang, Hongjun [1 ]
Yu, Wei [2 ,3 ]
Wang, Ping [1 ]
Miao, Jijun [3 ]
Fiallos-Torres, Mauricio [3 ]
机构
[1] Res Inst Petr Explorat & Dev CNPC, Beijing 100083, Peoples R China
[2] Univ Texas Austin, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[3] Sim Tech LLC, Houston, TX 77494 USA
关键词
Duvernay shale; volatile oil; huff-n-puff; EDFM; sensitivity analysis; NANOPORE CONFINEMENT; CARBON-DIOXIDE; PHASE-BEHAVIOR; RECOVERY; FLUID; MODEL;
D O I
10.3390/en14082070
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Duvernay shale is a world class shale deposit with a total resource of 440 billion barrels oil equivalent in the Western Canada Sedimentary Basin (WCSB). The volatile oil recovery factors achieved from primary production are much lower than those from the gas-condensate window, typically 5-10% of original oil in place (OOIP). The previous study has indicated that huff-n-puff gas injection is one of the most promising enhanced oil recovery (EOR) methods in shale oil reservoirs. In this paper, we built a comprehensive numerical compositional model in combination with the embedded discrete fracture model (EDFM) method to evaluate geological and engineering controls on gas huff-n-puff in Duvernay shale volatile oil reservoirs. Multiple scenarios of compositional simulations of huff-n-puff gas injection for the proposed twelve parameters have been conducted and effects of reservoir, completion and depletion development parameters on huff-n-puff are evaluated. We concluded that fracture conductivity, natural fracture density, period of primary depletion, and natural fracture permeability are the most sensitive parameters for incremental oil recovery from gas huff-n-puff. Low fracture conductivity and a short period of primary depletion could significantly increase the gas usage ratio and result in poor economical efficiency of the gas huff-n-puff process. Sensitivity analysis indicates that due to the increase of the matrix-surface area during gas huff-n-puff process, natural fractures associated with hydraulic fractures are the key controlling factors for gas huff-n-puff in Duvernay shale oil reservoirs. The range for the oil recovery increase over the primary recovery for one gas huff-n-puff cycle (nearly 2300 days of production) in Duvernay shale volatile oil reservoir is between 0.23 and 0.87%. Finally, we proposed screening criteria for gas huff-n-puff potential areas in volatile oil reservoirs from Duvernay shale. This study is highly meaningful and can give valuable reference to practical works conducting the huff-n-puff gas injection in both Duvernay and other shale oil reservoirs.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Selection of hydrocarbon gas for huff-n-puff IOR in shale oil reservoirs
    Ozowe, Williams
    Zheng, Shuang
    Sharma, Mukul
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
  • [2] Increase liquid oil production by huff-n-puff of produced gas in shale gas condensate reservoirs
    Sheng, James J.
    JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES, 2015, 11 : 19 - 26
  • [3] Huff-n-puff gas injection or gas flooding in tight oil reservoirs?
    Tang, Weiyu
    Sheng, James J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [4] Simulation study of factors affecting CO2 Huff-n-Puff process in tight oil reservoirs
    Zhang, Yuan
    Yu, Wei
    Li, Zhiping
    Sepehrnoori, Kamy
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 163 : 264 - 269
  • [5] Integrated Study on Carbon Dioxide Geological Sequestration and Gas Injection Huff-n-Puff to Enhance Shale Oil Recovery
    Wang, Lei
    Cai, Shengyao
    Chen, Wenli
    Lei, Gang
    ENERGIES, 2024, 17 (08)
  • [6] Experimental study of viscosity reducer-assisted gas huff-n-puff in heavy oil reservoirs
    Zhu, Di
    Li, Binfei
    Li, Boliang
    Husein, Maen M.
    Xu, Zhengxiao
    Wang, Haitao
    Li, Zhaomin
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
  • [7] Optimization of huff-n-puff gas injection in a shale gas condensate reservoir
    Meng, Xingbang
    Sheng, James J.
    JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES, 2016, 16 : 34 - 44
  • [8] Performance Evaluation of CO2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs
    Meng, Xingbang
    Meng, Zhan
    Ma, Jixiang
    Wang, Tengfei
    ENERGIES, 2019, 12 (01)
  • [9] Huff-n-Puff (HNP) design for shale reservoirs using local dual-porosity, dual-permeability compositional simulation
    Hamdi, Hamidreza
    Clarkson, Christopher R.
    Esmail, Ali
    Costa Sousa, Mario
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (04) : 933 - 955
  • [10] Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures
    Sun, Runxuan
    Yu, Wei
    Xu, Feng
    Pu, Hui
    Miao, Jijun
    FUEL, 2019, 236 : 1446 - 1457