Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity

被引:344
作者
Zhu, Wenguang [1 ,2 ]
Qiu, Xiaofeng [3 ]
Iancu, Violeta [2 ]
Chen, Xing-Qiu [1 ]
Pan, Hui [4 ]
Wang, Wei [4 ]
Dimitrijevic, Nada M. [5 ,6 ]
Rajh, Tijana [5 ]
Meyer, Harry M., III [1 ]
Paranthaman, M. Parans [3 ]
Stocks, G. M. [1 ]
Weitering, Hanno H. [1 ,2 ]
Gu, Baohua [4 ]
Eres, Gyula [1 ]
Zhang, Zhenyu [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[3] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[6] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
N-DOPED TIO2; PHOTOCATALYSIS; DIOXIDE; ORIGIN; WATER;
D O I
10.1103/PhysRevLett.103.226401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
"Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO2 by narrowing its band gap. The concept embodies two crucial ingredients: The electrostatic attraction within the n-p dopant pair enhances both the thermodynamic and kinetic solubilities, and the noncompensated nature ensures the creation of tunable intermediate bands that effectively narrow the band gap. The concept is demonstrated using first-principles calculations, and is validated by direct measurements of band gap narrowing using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in the visible-light region. This concept is broadly applicable to the synthesis of other advanced functional materials that demand optimal dopant control.
引用
收藏
页数:4
相关论文
共 35 条
[11]   Design of Narrow-Gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J].
Gai, Yanqin ;
Li, Jingbo ;
Li, Shu-Shen ;
Xia, Jian-Bai ;
Wei, Su-Huai .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)
[12]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[13]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[14]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[15]   Efficient photochemical water splitting by a chemically modified n-TiO2 2 [J].
Khan, SUM ;
Al-Shahry, M ;
Ingler, WB .
SCIENCE, 2002, 297 (5590) :2243-2245
[16]   CHROMIA SUPPORTED ON TITANIA .1. AN EPR STUDY OF THE CHEMICAL AND STRUCTURAL-CHANGES OCCURRING DURING CATALYST GENESIS [J].
KOHLER, K ;
SCHLAPFER, CW ;
VONZELEWSKY, A ;
NICKL, J ;
ENGWEILER, J ;
BAIKER, A .
JOURNAL OF CATALYSIS, 1993, 143 (01) :201-214
[17]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[18]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[19]   Electronic properties of N- and C-doped TiO2 -: art. no. 011904 [J].
Lee, JY ;
Park, J ;
Cho, JH .
APPLIED PHYSICS LETTERS, 2005, 87 (01)
[20]   PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS [J].
LINSEBIGLER, AL ;
LU, GQ ;
YATES, JT .
CHEMICAL REVIEWS, 1995, 95 (03) :735-758