Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity

被引:344
作者
Zhu, Wenguang [1 ,2 ]
Qiu, Xiaofeng [3 ]
Iancu, Violeta [2 ]
Chen, Xing-Qiu [1 ]
Pan, Hui [4 ]
Wang, Wei [4 ]
Dimitrijevic, Nada M. [5 ,6 ]
Rajh, Tijana [5 ]
Meyer, Harry M., III [1 ]
Paranthaman, M. Parans [3 ]
Stocks, G. M. [1 ]
Weitering, Hanno H. [1 ,2 ]
Gu, Baohua [4 ]
Eres, Gyula [1 ]
Zhang, Zhenyu [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[3] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[6] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
N-DOPED TIO2; PHOTOCATALYSIS; DIOXIDE; ORIGIN; WATER;
D O I
10.1103/PhysRevLett.103.226401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
"Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO2 by narrowing its band gap. The concept embodies two crucial ingredients: The electrostatic attraction within the n-p dopant pair enhances both the thermodynamic and kinetic solubilities, and the noncompensated nature ensures the creation of tunable intermediate bands that effectively narrow the band gap. The concept is demonstrated using first-principles calculations, and is validated by direct measurements of band gap narrowing using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in the visible-light region. This concept is broadly applicable to the synthesis of other advanced functional materials that demand optimal dopant control.
引用
收藏
页数:4
相关论文
共 35 条
[1]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase -: art. no. 026103 [J].
Batzill, M ;
Morales, EH ;
Diebold, U .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Origin of the different photoactivity of N-doped anatase and rutile TiO2 -: art. no. 085116 [J].
Di Valentin, C ;
Pacchioni, G ;
Selloni, A .
PHYSICAL REVIEW B, 2004, 70 (08) :085116-1
[6]   N-doped TiO2:: Theory and experiment [J].
Di Valentin, Cristiana ;
Finazzi, Emanuele ;
Pacchioni, Gianfranco ;
Selloni, Annabella ;
Livraghi, Stefano ;
Paganini, Maria Cristina ;
Giamello, Elio .
CHEMICAL PHYSICS, 2007, 339 (1-3) :44-56
[7]   The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals [J].
Diwald, O ;
Thompson, TL ;
Goralski, EG ;
Walck, SD ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (01) :52-57
[8]   Investigations of metal-doped titanium dioxide photocatalysts [J].
Dvoranová, D ;
Brezová, V ;
Mazúr, M ;
Malati, MA .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 37 (02) :91-105
[9]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[10]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582