Hierarchically hyperbolic groups are determined by their Morse boundaries

被引:4
作者
Mousley, Sarah C. [1 ]
Russell, Jacob [2 ]
机构
[1] Univ Illinois, 1409 W Green St, Urbana, IL 61801 USA
[2] CUNY, Grad Ctr, 365 5th Ave, New York, NY 10016 USA
关键词
Morse boundary; Hierarchically hyperbolic group; Quasi-mobius; GEOMETRY; COMPLEX;
D O I
10.1007/s10711-018-0402-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize a result of Paulin on the Gromov boundary of hyperbolic groups to the Morse boundary of top-heavy hierarchically hyperbolic spaces admitting cocompact group actions by isometries. Namely we show that if the Morse boundaries of two such spaces each contain at least three points, then the spaces are quasi-isometric if and only if there exists a homeomorphism between their Morse boundaries such that the map and its inverse are 2-stable, quasi-mobius. Our result extends a recent result of Charney-Murray, who prove such a classification for CAT(0) groups, and is new for mapping class groups and the fundamental groups of 3-manifolds without Nil or Sol components.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 27 条
  • [1] Abbott C., 2017, ARXIV150900632V2
  • [2] Behrstock J., 2015, ARXIV150900632V2
  • [3] Hierarchically hyperbolic spaces I: Curve complexes for cubical groups
    Behrstock, Jason
    Hagen, Mark F.
    Sisto, Alessandro
    [J]. GEOMETRY & TOPOLOGY, 2017, 21 (03) : 1731 - 1804
  • [4] Geometry and rigidity of mapping class groups
    Behrstock, Jason
    Kleiner, Bruce
    Minsky, Yair
    Mosher, Lee
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 781 - 888
  • [5] Asymptotic geometry of the mapping class group and Teichmuller space
    Behrstock, Jason A.
    [J]. GEOMETRY & TOPOLOGY, 2006, 10 : 1523 - 1578
  • [6] Bourdon M, 1997, GEOM FUNCT ANAL, V7, P245, DOI 10.1007/PL00001619
  • [7] Bourdon M, 2002, RIGIDITY IN DYNAMICS AND GEOMETRY, P1
  • [8] Bridson MR., 2013, METRIC SPACES NONPOS, DOI DOI 10.1007/978-3-662-12494-9
  • [9] The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores
    Brock, JF
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 495 - 535
  • [10] Charney R., 2018, ARXIV180105315