A CRITERION FOR THE p-SUPERSOLUBILITY OF FINITE GROUPS

被引:1
作者
Lukyanenko, Vladimir O. [1 ]
Skiba, Alexander N. [1 ]
机构
[1] Gomel Francisk Skorina State Univ, Dept Math, Gomel 246019, BELARUS
关键词
Sylow subgroup; Hall subgroup; p-soluble group; p-length; p-supersoluble group;
D O I
10.1142/S0219498810003768
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our main result here is the following theorem: Let G = AT, where A is a Hall pi-subgroup of G and T is p-nilpotent for some prime p is not an element of pi, let P denote a Sylow p-subgroup of T and assume that A permutes with every Sylow subgroup of T. Suppose that there is a number p(k) such that 1 < p(k) < |P| and A permutes with every subgroup of P of order p(k) and with every cyclic subgroup of P of order 4 (if p(k) = 2 and P is non-abelian). Then G is p-supersoluble.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1968, Finite Groups
[2]  
Ballester-Bolinches A., 2006, MATH ITS APPL, V584
[3]  
BOROVIKOV MT, 1990, QUESTIONS ALG, V5, P80
[4]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
[5]  
GUO W, ACTA MATH S IN PRESS
[6]  
GUO W, MATH NACHR IN PRESS
[7]   G-covering systems of subgroups for classes of p-supersoluble and p-nilpotent finite groups [J].
Guo, WB ;
Shum, KP ;
Skiba, AN .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (03) :433-442
[8]  
Guo WB, 2000, THEORY CLASSES GROUP
[9]  
HALL P, 1937, J LOND MATH SOC, V12, P188
[10]  
Huppert B., 1967, Endliche Gruppen I