A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization

被引:75
作者
Zhang, Feilong [1 ,3 ]
Fan, Junbing [2 ]
Zhang, Pengchao [2 ]
Liu, Mingjie [4 ]
Meng, Jingxin [2 ]
Jiang, Lei [2 ,3 ,4 ]
Wang, Shutao [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Chem, Key Lab Green Printing, BNLMS, Beijing, Peoples R China
[2] Chinese Acad Sci, Ctr Excellence Nanosci, Tech Inst Phys & Chem, Key Lab Bioinspired Mat & Interfacial Sci, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Beihang Univ, Sch Chem & Environm, Minist Educ, Key Lab Bioinspired Smart Interfacial Sci & Techn, Beijing, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
BLOCK-COPOLYMERS; ARTIFICIAL MUSCLES; POLYMER BILAYERS; DRIVEN MOTILITY; GEL; VESICLES; TRANSITION; HYDROGELS; DEVICES; SYSTEMS;
D O I
10.1038/am.2017.61
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synthetic polymer actuators have attracted increasing attention for their potential applications in artificial muscles, soft robotics and sensors. The majority of previous efforts have focused on smart hydrogels with bilayer structures that can change their shape in response to environmental stimuli, such as temperature, light and certain chemicals. However, the practical application of hydrogels is limited because of their low modulus and weak mechanical strength. Here we synthesized a robust monolithic actuator of a macro-scale hydro/organo binary cooperative Janus copolymer film. The process involves direct, one-step interfacial polymerization of immiscible hydrophilic and hydrophobic vinyl monomer solutions, and the resultant product exhibited binary cooperative shape transformation to multiple external stimuli. The Janus copolymer film can work in both aqueous solutions and organic solvents, with bidirectional and site-specific bending arising from cooperative asymmetric swelling/shrinking of the hydrogel and organogel networks. In addition, the as-prepared Janus copolymer film can act as a sensor element for solvent leakage detection. This binary cooperative strategy is applicable to most immiscible monomer systems and provides a general approach to developing novel functional copolymer materials.
引用
收藏
页码:e380 / e380
页数:8
相关论文
共 54 条
[1]   Geometry and Mechanics in the Opening of Chiral Seed Pods [J].
Armon, Shahaf ;
Efrati, Efi ;
Kupferman, Raz ;
Sharon, Eran .
SCIENCE, 2011, 333 (6050) :1726-1730
[2]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[3]   Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles? [J].
Blanazs, Adam ;
Madsen, Jeppe ;
Battaglia, Giuseppe ;
Ryan, Anthony J. ;
Armes, Steven P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16581-16587
[4]   Actuation systems in plants as prototypes for bioinspired devices [J].
Burgert, Ingo ;
Fratzl, Peter .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1893) :1541-1557
[5]   Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk [J].
Chun, Kyoung-Yong ;
Kim, Shi Hyeong ;
Shin, Min Kyoon ;
Kwon, Cheong Hoon ;
Park, Jihwang ;
Kim, Youn Tae ;
Spinks, Geoffrey M. ;
Lima, Marcio D. ;
Haines, Carter S. ;
Baughman, Ray H. ;
Kim, Seon Jeong .
NATURE COMMUNICATIONS, 2014, 5
[6]   Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers [J].
Cornelissen, JJLM ;
Fischer, M ;
Sommerdijk, NAJM ;
Nolte, RJM .
SCIENCE, 1998, 280 (5368) :1427-1430
[7]   How pine cones open [J].
Dawson, J ;
Vincent, JFV ;
Rocca, AM .
NATURE, 1997, 390 (6661) :668-668
[8]   Polymersomes: Tough vesicles made from diblock copolymers [J].
Discher, BM ;
Won, YY ;
Ege, DS ;
Lee, JCM ;
Bates, FS ;
Discher, DE ;
Hammer, DA .
SCIENCE, 1999, 284 (5417) :1143-1146
[9]   Polymer vesicles [J].
Discher, DE ;
Eisenberg, A .
SCIENCE, 2002, 297 (5583) :967-973
[10]   The role of wheat awns in the seed dispersal unit [J].
Elbaum, Rivka ;
Zaltzman, Liron ;
Burgert, Ingo ;
Fratzl, Peter .
SCIENCE, 2007, 316 (5826) :884-886