Exploring the transfer of plasticity across Laves phase interfaces in a dual phase magnesium alloy

被引:22
作者
Guenole, Julien [1 ,2 ,3 ]
Zubair, Muhammad [1 ,4 ]
Roy, Swagata [1 ]
Xie, Zhuocheng [1 ]
Lipinska-Chwalek, Marta [5 ,6 ]
Sandloebes-Haut, Stefanie [1 ]
Korte-Kerzel, Sandra [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys Met & Mat Phys, D-52056 Aachen, Germany
[2] Univ Lorraine, CNRS, Arts & Metiers ParisTech, LEM3, F-57070 Metz, France
[3] Univ Lorraine, Labex Damas, F-57070 Metz, France
[4] UET, Dept Met & Mat Engn, GT Rd, Lahore, Pakistan
[5] Rhein Westfal TH Aachen, Cent Facil Elect Microscopy, D-52074 Aachen, Germany
[6] Forschungszentrum Julich, Ernst RuskaCentre Microscopy & Spect Electrons, D-52425 Julich, Germany
关键词
Dislocation; Intermetallic; Atomistic simulations; Indentation; Scanning electron microscopy; MG-AL; MECHANICAL-PROPERTIES; CREEP; MICROSTRUCTURE; DEFORMATION; DYNAMICS;
D O I
10.1016/j.matdes.2021.109572
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical behaviour of Mg-Al alloys can be largely improved by the formation of an intermetallic Laves phase skeleton, in particular the creep strength. Recent nanomechanical studies revealed plasticity by dislocation glide in the (Mg,Al)(2)Ca Laves phase, even at room temperature. As strengthening skeleton, this phase remains, however, brittle at low temperature. In this work, we present experimental evidence of slip transfer from the Mg matrix to the (Mg,Al)(2)Ca skeleton at room temperature and explore associated mechanisms by means of atomistic simulations. We identify two possible mechanisms for transferring Mg basal slip into Laves phases depending on the crystallographic orientation: a direct and an indirect slip transfer triggered by full and partial dislocations, respectively. Our experimental and numerical observations also highlight the importance of interfacial sliding that can prevent the transfer of the plasticity from one phase to the other. (C) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 41 条
[1]   Microstructural evolution during creep of Ca-containing AZ91 [J].
Amberger, D. ;
Eisenlohr, P. ;
Goeken, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 510-11 :398-402
[2]   Structural relaxation made simple [J].
Bitzek, Erik ;
Koskinen, Pekka ;
Gaehler, Franz ;
Moseler, Michael ;
Gumbsch, Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[3]   Microcompression of single-crystal magnesium [J].
Byer, Cynthia M. ;
Li, Bin ;
Cao, Buyang ;
Ramesh, K. T. .
SCRIPTA MATERIALIA, 2010, 62 (08) :536-539
[4]   Dislocations in complex materials [J].
Chisholm, MF ;
Kumar, S ;
Hazzledine, P .
SCIENCE, 2005, 307 (5710) :701-703
[5]  
CONRAD H, 1957, T AM I MIN MET ENG, V209, P503
[6]  
Eibisch H, 2008, INT J MATER RES, V99, P56, DOI 10.3139/146.101604
[7]   Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS [J].
Guenole, Julien ;
Noehring, Wolfram G. ;
Vaid, Aviral ;
Houlle, Frederic ;
Xie, Zhuocheng ;
Prakash, Aruna ;
Bitzek, Erik .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 175
[8]   Basal slip in Laves phases: The synchroshear dislocation [J].
Guenole, Julien ;
Mouhib, Fatim-Zahra ;
Huber, Liam ;
Grabowski, Blazej ;
Korte-Kerzel, Sandra .
SCRIPTA MATERIALIA, 2019, 166 :134-138
[9]   Plasticity in crystalline-amorphous core-shell Si nanowires controlled by native interface defects [J].
Guenole, Julien ;
Godet, Julien ;
Brochard, Sandrine .
PHYSICAL REVIEW B, 2013, 87 (04)
[10]  
Hazzledine P.M., 1992, MRS Proc., V288, P591, DOI [10.1357/PROC-288-591, DOI 10.1357/PROC-288-591]