Synthesis, reversibility and mechanism of the dehydration of monoclinic CaZn2(PO4)2•2H2O

被引:3
作者
Afflerbach, S. [1 ]
Sharma, S. [1 ]
Trettin, R. [1 ]
机构
[1] Univ Siegen, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
关键词
Calcium dizinc bisphosphate dihydrate; Parascholzite; Dehydration mechanism; Thermochemical energy storage and conversion; In-situ X-ray diffraction; THERMAL-ENERGY STORAGE; CONVERSION COATINGS; ORDER-DISORDER;
D O I
10.1016/j.jssc.2018.06.022
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The reversibility of the dehydration of monoclinic CaZn2(PO4)(2)center dot 2H(2)O to the corresponding monohydrate is proven and the dehydration enthalpy determined by combination of thermal analysis and X-ray diffraction. The mechanism of the monohydrate formation is investigated by scanning electron microscopy (SEM) and temperature dependent in situ X-ray powder diffraction. Mechanistic impact on the powder bulk properties are deduced. As for the orthorhombic dimorph, a crystalline monohydrate species is identified and firstly indexed. Thermal induced changes of the lattice parameters up to the formation of the monohydrate are analyzed. A linear elongation of the lattice parallel to the directions [100] and [001] is found. The corresponding elongation coefficients and the volumetric expansion of the unit cell are determined. With regard to the option of synthetic production of the compound, a possible application of the material for thermochemical energy storage and conversion is conceivable. The relevance of fundamental mechanistic features on the bulk behaviour upon cyclic de- and rehydration is discussed.
引用
收藏
页码:274 / 284
页数:11
相关论文
共 37 条
[1]  
Abedin AliH., 2011, OPEN RENEWABLE ENERG, V4, DOI [DOI 10.2174/1876387101004010042, 10.2174/1876387101004010042]
[2]   Phase transformations during de-and rehydration of scholzite CaZn2(PO4)2•2H2O [J].
Afflerbach, S. ;
Kowald, T. ;
Trettin, R. .
JOURNAL OF SOLID STATE CHEMISTRY, 2017, 254 :184-194
[3]  
Agarwal A, 2017, MATER TODAY-PROC, V4, P779, DOI 10.1016/j.matpr.2017.01.086
[4]   An overview of thermal energy storage systems [J].
Alva, Guruprasad ;
Lin, Yaxue ;
Fang, Guiyin .
ENERGY, 2018, 144 :341-378
[5]  
Bode R., 2016, MINER WELT, V27, P14
[6]   Advanced microstructural study of solution precursor plasma sprayed Zn doped hydroxyapatite coatings [J].
Candidato, Rolando T., Jr. ;
Sergi, Rachele ;
Jouin, Jenny ;
Noguera, Olivier ;
Pawlowski, Lech .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (04) :2134-2144
[7]   Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions [J].
Cot-Gores, Jaume ;
Castell, Albert ;
Cabeza, Luisa F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (07) :5207-5224
[8]   DEHYDRATION AND TRANSFORMATION PHASES OF SCHOLZITE CAZN2(PO4)2.2H2O [J].
CZAYA, R .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1972, B 28 (JAN15) :322-&
[9]   Phase change materials and thermal energy storage for buildings [J].
de Gracia, Alvaro ;
Cabeza, Luisa F. .
ENERGY AND BUILDINGS, 2015, 103 :414-419
[10]   Systematic search algorithm for potential thermochemical energy storage systems [J].
Deutsch, Markus ;
Mueller, Danny ;
Aumeyr, Christian ;
Jordan, Christian ;
Gierl-Mayer, Christian ;
Weinberger, Peter ;
Winter, Franz ;
Werner, Andreas .
APPLIED ENERGY, 2016, 183 :113-120