Hardware-Assisted Malware Detection using Explainable Machine Learning

被引:18
作者
Pan, Zhixin [1 ]
Sheldon, Jennifer [1 ]
Mishra, Prabhat [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
来源
2020 IEEE 38TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2020) | 2020年
关键词
Malware Detection; Explainable Learning;
D O I
10.1109/ICCD50377.2020.00113
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Malicious software, popularly known as malware, is widely acknowledged as a serious threat to modern computing systems. Software-based solutions, such as anti-virus software, are not effective since they rely on matching patterns that can be easily fooled by carefully crafted malware with obfuscation or other deviation capabilities. While recent malware detection methods provide promising results through effective utilization of hardware features, the detection results cannot be interpreted in a meaningful way. In this paper, we propose a hardware-assisted malware detection framework using explainable machine learning. This paper makes three important contributions. First, we theoretically establish that our proposed method can provide interpretable explanation of classification results to address the challenge of transparency. Next, we show that the explainable outcome can lead to accurate localization of malicious behaviors. Finally, experimental evaluation using a wide variety of real-world malware benchmarks demonstrates that our framework can produce accurate and human-understandable malware detection results with provable guarantees.
引用
收藏
页码:663 / 666
页数:4
相关论文
共 50 条
  • [11] A Novel Malware Analysis for Malware Detection and Classification using Machine Learning Algorithms
    Sethi, Kamalakanta
    Chaudhary, Shankar Kumar
    Tripathy, Bata Krishan
    Bera, Padmalochan
    SIN'17: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS, 2017, : 107 - 113
  • [12] Android Malware Detection Using Parallel Machine Learning Classifiers
    Yerima, Suleiman Y.
    Sezer, Sakir
    Muttik, Igor
    2014 EIGHTH INTERNATIONAL CONFERENCE ON NEXT GENERATION MOBILE APPS, SERVICES AND TECHNOLOGIES (NGMAST), 2014, : 37 - 42
  • [13] Application of Machine Learning in Malware Detection
    Van Quynh, Trinh
    Hien, Vu Thanh
    Nguyen, Vu Thanh
    Bao, Huynh Quoc
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 362 - 374
  • [14] Androhealthcheck: A malware detection system for android using machine learning
    Agrawal P.
    Trivedi B.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 35 - 41
  • [15] A Novel Malware Analysis Framework for Malware Detection and Classification using Machine Learning Approach
    Sethi, Kamalakanta
    Chaudhary, Shankar Kumar
    Tripathy, Bata Krishan
    Bera, Padmalochan
    ICDCN'18: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, 2018,
  • [16] A Cautionary Tale About Detecting Malware Using Hardware Performance Counters and Machine Learning
    Zhou, Boyou
    Gupta, Anmol
    Jahanshahi, Rasoul
    Egele, Manuel
    Joshi, Ajay
    IEEE DESIGN & TEST, 2021, 38 (03) : 39 - 50
  • [17] Malware Detection in Android Mobile Platform using Machine Learning Algorithms
    Al Ali, Mariam
    Svetinovic, Davor
    Aung, Zeyar
    Lukman, Suryani
    2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS), 2017, : 763 - 768
  • [18] Efficient and Effective Static Android Malware Detection Using Machine Learning
    Bansal, Vidhi
    Ghosh, Mohona
    Baliyan, Niyati
    INFORMATION SYSTEMS SECURITY, ICISS 2022, 2022, 13784 : 103 - 118
  • [19] Poster: Android Malware Detection using Hybrid Features and Machine Learning
    Kadir, Abdul
    Peddoju, Sateesh K.
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 494 - 495
  • [20] Zero-Day Malware Classification and Detection Using Machine Learning
    Kumar J.
    Rajendran B.
    Sudarsan S.D.
    SN Computer Science, 5 (1)