FACIAL MARKS: SOFT BIOMETRIC FOR FACE RECOGNITION

被引:44
作者
Jain, Anil K. [1 ]
Park, Unsang [1 ]
机构
[1] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
来源
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6 | 2009年
关键词
face recognition; facial marks; soft biometrics; local features; Active Appearance Model;
D O I
10.1109/ICIP.2009.5413921
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to utilize micro features, namely facial marks (e.g., freckles, moles, and scars) to improve face recognition and retrieval performance. Facial marks can be used in three ways: i) to supplement the features in an existing face matcher, ii) to enable fast retrieval from a large database using facial mark based queries, and iii) to enable matching or retrieval from a partial or profile face image with marks. We use Active Appearance Model (AAM) to locate and segment primary facial features (e.g., eyes, nose, and mouth). Then, Laplacian-of-Gaussian (LoG) and morphological operators are used to detect facial marks. Experimental results based on FERET (426 images, 213 subjects) and Mugshot (1,225 images, 671 subjects) databases show that the use of facial marks improves the rank-1 identification accuracy of a state-of-the-art face recognition system from 92.96% to 93.90% and from 91.88% to 93.14%, respectively.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 12 条
[1]  
[Anonymous], FACEVACS SOFTW DEV K
[2]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[3]  
Cootes T., 1998, Proc. ECCV, V2, P484
[4]  
Jain AK, 2004, LECT NOTES COMPUT SC, V3072, P731
[5]  
Lin D., 2006, COMPUTER VISION PATT, V2, P1355
[6]   Feature detection with automatic scale selection [J].
Lindeberg, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 30 (02) :79-116
[7]  
Liu TI, 2008, C IND ELECT APPL, P1, DOI 10.1109/ICIEA.2008.4582469
[8]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[9]   Local feature analysis: A general statistical theory for object representation [J].
Penev, PS ;
Atick, JJ .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1996, 7 (03) :477-500
[10]  
Piernas Juan., 2007, SC 07, P1, DOI DOI 10.1145/1362622.1362660