Calculation of eddy currents with edge elements on non-matching grids in moving structures

被引:0
作者
Rapetti, F
Bouillault, F
Santandrea, L
Buffa, A
Maday, Y
Razek, A
机构
[1] Univ Paris 11, ASCI, UPR 9029, CNRS Lab, F-91403 Orsay, France
[2] Univ Paris 06, LGEP, UMR 8507, CNRS Lab,Supelec, F-91192 Gif Sur Yvette, France
[3] Univ Paris 11, LGEP, UMR 8507, CNRS Lab,Supelec, F-91192 Gif Sur Yvette, France
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
eddy currents; edge element approximation on nonmatching grids; electric field as primary variable; moving structures;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present a nonconforming nonoverlapping domain decomposition method to approximate the eddy current problem, formulated in terms of the electric field variable, in nonstationary structures. This approximation, that allows for nonmatching grids at the sliding interface, is based on the mortar element method combined with edge elements in space and finite differences in time. Numerical results illustrate how the method works and the influence of the free part movement on the electric field distribution.
引用
收藏
页码:1351 / 1355
页数:5
相关论文
共 10 条
[1]  
BERNARDI C, 1990, NONLINEAR PARTIAL DI, P13
[2]  
Bossavit A., 1998, COMPUTATIONAL ELECTR
[3]  
BUFFA A, 2000, IN PRESS IEEE T MAGN
[4]  
BUFFA A, 1999, R99002 PARIS 6 U
[5]   THE MOVEMENT IN FIELD MODELING [J].
DAVAT, B ;
REN, Z ;
LAJOIEMAZENC, M .
IEEE TRANSACTIONS ON MAGNETICS, 1985, 21 (06) :2296-2298
[6]   Modelling eddy currents induced by rotating systems [J].
Emson, CRI ;
Riley, CP ;
Walsh, DA ;
Ueda, K ;
Kumano, T .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :2593-2596
[7]   3D mesh connection techniques applied to movement simulation [J].
Golovanov, C ;
Coulomb, JL ;
Marechal, Y ;
Meunier, G .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :3359-3362
[8]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[9]  
RAPETTI F, 2000, COMPEL, V19
[10]  
RAZEK A, 1982, T IEEE MAG, V18, P655