Subseasonal Forecasts of Opportunity Identified by an Explainable Neural Network

被引:62
作者
Mayer, Kirsten J. [1 ]
Barnes, Elizabeth A. [1 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
explainable neural networks; forecasts of opportunity; subseasonal prediction; tropical‐ extratropical teleconnections; MADDEN-JULIAN OSCILLATION; NINO-SOUTHERN OSCILLATION; CIRCULATION; PREDICTION; MJO;
D O I
10.1029/2020GL092092
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature of the atmosphere and often requires the identification of favorable atmospheric conditions that may lead to enhanced skill ("forecasts of opportunity"). Here, we demonstrate that an artificial neural network (ANN) can identify such opportunities for tropical-extratropical circulation teleconnections within the North Atlantic (40 degrees N, 325 degrees E) at a lead of 22 days using the network's confidence in a given prediction. Furthermore, layer-wise relevance propagation (LRP), an ANN explainability technique, pinpoints the relevant tropical features the ANN uses to make accurate predictions. We find that LRP identifies tropical hot spots that correspond to known favorable regions for midlatitude teleconnections and reveals a potential new pattern for prediction in the North Atlantic on subseasonal timescales.
引用
收藏
页数:9
相关论文
共 48 条
[31]   Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning [J].
McGovern, Amy ;
Lagerquist, Ryan ;
Gagne, David John, II ;
Jergensen, G. Eli ;
Elmore, Kimberly L. ;
Homeyer, Cameron R. ;
Smith, Travis .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (11) :2175-2199
[32]  
Montavon G., 2019, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, P193
[33]   Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden-Julian oscillation and quasi-biennial oscillation [J].
Mundhenk, Bryan D. ;
Barnes, Elizabeth A. ;
Maloney, Eric D. ;
Baggett, Cory F. .
NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2018, 1
[34]   The Subseasonal Experiment (SubX): A Multimodel Subseasonal Prediction Experiment [J].
Pegion, Kathy ;
Kirtman, Ben P. ;
Becker, Emily ;
Collins, Dan C. ;
LaJoie, Emerson ;
Burgman, Robert ;
Bell, Ray ;
DelSole, Timothy ;
Min, Dughong ;
Zhu, Yuejian ;
Li, Wei ;
Sinsky, Eric ;
Guan, Hong ;
Gottschalck, Jon ;
Metzger, E. Joseph ;
Barton, Neil P. ;
Achuthavarier, Deepthi ;
Marshak, Jelena ;
Koster, Randal D. ;
Lin, Hai ;
Gagnon, Normand ;
Bell, Michael ;
Tippett, Michael K. ;
Robertson, Andrew W. ;
Sun, Shan ;
Benjamin, Stanley G. ;
Green, Benjamin W. ;
Bleck, Rainer ;
Kim, Hyemi .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (10) :2043-2060
[35]   IMPROVING AND PROMOTING SUBSEASONAL TO SEASONAL PREDICTION [J].
Robertson, Andrew W. ;
Kumar, Arun ;
Pena, Malaquias ;
Vitart, Frederic .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (03) :ES49-ES53
[36]   Modulation of the Global Atmospheric Circulation by Combined Activity in the Madden-Julian Oscillation and the El Nino-Southern Oscillation during Boreal Winter [J].
Roundy, Paul E. ;
MacRitchie, Kyle ;
Asuma, Jonas ;
Melino, Timothy .
JOURNAL OF CLIMATE, 2010, 23 (15) :4045-4059
[37]  
SARDESHMUKH PD, 1988, J ATMOS SCI, V45, P1228, DOI 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO
[38]  
2
[39]  
Shao X., 2020, FORCING MJO RELATED, DOI [10.1002/essoar.10504746.1, DOI 10.1002/ESSOAR.10504746.1]
[40]   Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability [J].
Toms, Benjamin A. ;
Barnes, Elizabeth A. ;
Ebert-Uphoff, Imme .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (09)