Subseasonal Forecasts of Opportunity Identified by an Explainable Neural Network

被引:62
作者
Mayer, Kirsten J. [1 ]
Barnes, Elizabeth A. [1 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
explainable neural networks; forecasts of opportunity; subseasonal prediction; tropical‐ extratropical teleconnections; MADDEN-JULIAN OSCILLATION; NINO-SOUTHERN OSCILLATION; CIRCULATION; PREDICTION; MJO;
D O I
10.1029/2020GL092092
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature of the atmosphere and often requires the identification of favorable atmospheric conditions that may lead to enhanced skill ("forecasts of opportunity"). Here, we demonstrate that an artificial neural network (ANN) can identify such opportunities for tropical-extratropical circulation teleconnections within the North Atlantic (40 degrees N, 325 degrees E) at a lead of 22 days using the network's confidence in a given prediction. Furthermore, layer-wise relevance propagation (LRP), an ANN explainability technique, pinpoints the relevant tropical features the ANN uses to make accurate predictions. We find that LRP identifies tropical hot spots that correspond to known favorable regions for midlatitude teleconnections and reveals a potential new pattern for prediction in the North Atlantic on subseasonal timescales.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks [J].
Abbot, John ;
Marohasy, Jennifer .
ATMOSPHERIC RESEARCH, 2014, 138 :166-178
[2]   A Priori Identification of Skillful Extratropical Subseasonal Forecasts [J].
Albers, John R. ;
Newman, Matthew .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (21) :12527-12536
[3]  
[Anonymous], 2015, NEURAL NETWORKS DEEP
[4]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[5]   Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales [J].
Baggett, Cory F. ;
Barnes, Elizabeth A. ;
Maloney, Eric D. ;
Mundhenk, Bryan D. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (14) :7528-7536
[6]   Tropospheric and Stratospheric Causal Pathways Between the MJO and NAO [J].
Barnes, Elizabeth A. ;
Samarasinghe, Savini M. ;
Ebert-Uphoff, Imme ;
Furtado, Jason C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (16) :9356-9371
[7]   Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation [J].
Cassou, Christophe .
NATURE, 2008, 455 (7212) :523-527
[8]   UNIVERSAL APPROXIMATION TO NONLINEAR OPERATORS BY NEURAL NETWORKS WITH ARBITRARY ACTIVATION FUNCTIONS AND ITS APPLICATION TO DYNAMICAL-SYSTEMS [J].
CHEN, TP ;
CHEN, H .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (04) :911-917
[9]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[10]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1