Storage systems for building-integrated photovoltaic (BIPV) and building-integrated photovoltaic/thermal (BIPVT) installations: Environmental profile and other aspects

被引:49
|
作者
Lamnatou, Chr. [1 ]
Notton, G. [2 ]
Chemisana, D. [1 ]
Cristofari, C. [2 ]
机构
[1] Univ Lleida, Environm Sci Dept, Appl Phys Sect, Jaume 2 69, Lleida 25001, Spain
[2] Univ Corsica, CNRS, UMR 6134, Res Ctr George Peri, Route Sanguinaires, F-20000 Ajaccio, France
关键词
Storage materials; Building-integrated photovoltaic (BIPV); Building-integrated photovoltaic/thermal (BIPVT); Life cycle assessment (LCA); CO2; emissions; embodied energy; Human toxicity; ecotoxicity; LIFE-CYCLE ASSESSMENT; PHASE-CHANGE MATERIALS; PV-TROMBE WALL; THERMAL PERFORMANCE; ENERGY PERFORMANCE; EXERGY ANALYSIS; AIR COLLECTOR; HEAT-PUMP; SOLAR; TECHNOLOGIES;
D O I
10.1016/j.scitotenv.2019.134269
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years there has been an increasing interest in Building-Integrated Photovoltaic (BIPV) and Building-Integrated Photovoltaic/Thermal (BIPVT) systems since they produce clean energy and replace conventional building envelope materials. By taking into account that storage is a key factor in the effective use of renewable energy, the present article is an overview about storage systems which are appropriate for BIPV and BIPVT applications. The literature review shows that there are multiple storage solutions, based on different kinds of materials (batteries, Phase Change Material (PCM) components, etc.). In terms of BIPV and BIPVT with batteries or PCMs or water tanks as storage systems, most of the installations are non-concentrating, facade- or roof-integrated, water- or air-based (in the case of BIPVT) and include silicon-based PV cells, lead-acid or lithium-ion batteries, paraffin- or salt-based PCMs. Regarding parameters that affect the environmental profile of storage systems, in the case of batteries critical factors such as material manufacturing, accidental release of electrolytes, inhalation toxicity, flammable elements, degradation and end-of-life management play a pivotal role. Regarding PCMs, there are some materials that are corrosive and present fire-safety issues as well as high toxicity in terms of human health and ecosystems. Concerning water storage tanks, based on certain studies about tanks with volumes of 300 L and 600 L, their impacts range from 5.9 to 11.7 GJ(prim) and from 0.3 to 1.0 to CO2.eq. Finally, it should be noted that additional storage options such as Trombe walls, pebble beds and nanotechnologies are critically discussed. The contribution of the present article to the existing literature is associated with the fact that it presents a critical review about storage devices in the case of BIPV and BIPVT applications, by placing emphasis on the environmental profile of certain storage materials. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Investigation of building-integrated photovoltaic, photovoltaic thermal, ground source heat pump and green roof systems
    Elaouzy, Y.
    Fadar, El
    ENERGY CONVERSION AND MANAGEMENT, 2023, 283
  • [32] PERFORMANCE OF HEAT PUMP ASSISTED BUILDING-INTEGRATED COMBINED PHOTOVOLTAIC THERMAL SOLAR COLLECTORS (BIPVT) IN COLD CLIMATE
    Gautam, Khem Raj
    Andresen, Grom Bruun
    2018 BUILDING PERFORMANCE ANALYSIS CONFERENCE AND SIMBUILD, 2018, : 623 - 630
  • [33] Performance of a building-integrated photovoltaic/thermal system under frame shadows
    Wang, Yunyun
    Ke, Shanming
    Liu, Fengshou
    Li, Junfei
    Pei, Gang
    ENERGY AND BUILDINGS, 2017, 134 : 71 - 79
  • [34] MODELING, TESTING, AND EVALUATION OF A BUILDING-INTEGRATED PHOTOVOLTAIC-THERMAL COLLECTOR
    Corbin, Charles D.
    Brandemuehl, Michael J.
    ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 319 - 328
  • [35] ENERGY EFFICIENCY AND THERMAL COMFORT IN BUILDING-INTEGRATED PHOTOVOLTAIC - CASE STUDY
    Pacurar, Cristian
    Pacurar, Ana Talida
    Toader, Dumitru
    NANOCON 2014, 6TH INTERNATIONAL CONFERENCE, 2015, : 400 - 404
  • [36] Experimental investigation of a building-integrated, transparent, concentrating photovoltaic and thermal collector
    Novelli, Nick
    Phillips, Kenton
    Shultz, Justin
    Derby, Melanie M.
    Salvas, Ryan
    Craft, Jesse
    Stark, Peter
    Jensen, Michael
    Derby, Stephen
    Dyson, Anna
    RENEWABLE ENERGY, 2021, 176 : 617 - 634
  • [37] Semitransparent organic photovoltaics for building-integrated photovoltaic applications
    Yongxi Li
    Xinjing Huang
    Hafiz K. M. Sheriff
    Stephen R. Forrest
    Nature Reviews Materials, 2023, 8 : 186 - 201
  • [38] Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System
    Candanedo, Luis M.
    Athienitis, Andreas
    Park, Kwang-Wook
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (02):
  • [39] Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems
    Cucchiella, Federica
    D'Adamo, Idiano
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (07): : 5245 - 5259
  • [40] Semitransparent organic photovoltaics for building-integrated photovoltaic applications
    Li, Yongxi
    Huang, Xinjing
    Sheriff Jr, Hafiz K. M.
    Forrest, Stephen R.
    NATURE REVIEWS MATERIALS, 2023, 8 (03) : 186 - 201