Bayesian Variable Selection Methods for Matched Case-Control Studies

被引:5
|
作者
Asafu-Adjei, Josephine [1 ,2 ]
Tadesse, Mahlet G. [3 ]
Coull, Brent [4 ]
Balasubramanian, Raji [5 ]
Lev, Michael [6 ]
Schwamm, Lee [7 ]
Betensky, Rebecca [8 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biostat, 3104-E McGavran Greenberg Hall, Chapel Hill, NC 27515 USA
[2] Univ North Carolina Chapel Hill, Dept Nursing, 2005 Carrington Hall, Chapel Hill, NC 27515 USA
[3] Georgetown Univ, Dept Math & Stat, Washington, DC USA
[4] Harvard Sch Publ Hlth, Dept Biostat, Boston, MA USA
[5] Univ Massachusetts, Amherst, MA 01003 USA
[6] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[7] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[8] Harvard Univ, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
Bayesian analysis; conditional logistic regression; matched case-control studies; variable selection methods; GENE-EXPRESSION; MODEL SELECTION; INSULAR CORTEX; REGRESSION; DISEASE; LATERALIZATION; CLASSIFICATION; REGULARIZATION; CONVERGENCE; ASSOCIATION;
D O I
10.1515/ijb-2016-0043
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Matched case-control designs are currently used in many biomedical applications. To ensure high efficiency and statistical power in identifying features that best discriminate cases from controls, it is important to account for the use of matched designs. However, in the setting of high dimensional data, few variable selection methods account for matching. Bayesian approaches to variable selection have several advantages, including the fact that such approaches visit a wider range of model subsets. In this paper, we propose a variable selection method to account for case-control matching in a Bayesian context and apply it using simulation studies, a matched brain imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular biomarker study conducted by the High Risk Plaque Initiative.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Bayesian model averaging: improved variable selection for matched case-control studies
    Mu, Yi
    See, Isaac
    Edwards, Jonathan R.
    EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2019, 16 (02)
  • [2] Performance of variable selection methods for assessing the health effects of correlated exposures in case-control studies
    Lenters, Virissa
    Vermeulen, Roel
    Portengen, Lutzen
    OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2018, 75 (07) : 522 - 529
  • [3] Variable selection in Bayesian generalized linear-mixed models: An illustration using candidate gene case-control association studies
    Tsai, Miao-Yu
    BIOMETRICAL JOURNAL, 2015, 57 (02) : 234 - 253
  • [4] A new semiparametric procedure for matched case-control studies with missing covariates
    Sinha, Samiran
    Wang, Suojin
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (07) : 889 - 905
  • [5] A tree-based modeling approach for matched case-control studies
    Schauberger, Gunther
    Tanaka, Luana Fiengo
    Berger, Moritz
    STATISTICS IN MEDICINE, 2023, 42 (05) : 676 - 692
  • [6] Random forests for the analysis of matched case-control studies
    Schauberger, Gunther
    Klug, Stefanie J.
    Berger, Moritz
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [7] Variable importance in matched case-control studies in settings of high dimensional data
    Balasubramanian, Raji
    Houseman, E. Andres
    Coull, Brent A.
    Lev, Michael H.
    Schwamm, Lee H.
    Betensky, Rebecca A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2014, 63 (04) : 639 - 655
  • [8] Using Kendall's tau(b) correlations to improve variable selection methods in case-control studies
    OGorman, TW
    Woolson, RF
    BIOMETRICS, 1995, 51 (04) : 1451 - 1460
  • [9] Variable Selection and Prediction Using a Nested, Matched Case-Control Study: Application to Hospital Acquired Pneumonia in Stroke Patients
    Qian, Jing
    Payabvash, Seyedmehdi
    Kemmling, Andre
    Lev, Michael H.
    Schwamm, Lee H.
    Betensky, Rebecca A.
    BIOMETRICS, 2014, 70 (01) : 153 - 163
  • [10] Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Case-Control Sequencing Studies
    Larson, Nicholas B.
    McDonnell, Shannon
    Albright, Lisa Cannon
    Teerlink, Craig
    Stanford, Janet
    Ostrander, Elaine A.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac
    Bailey-Wilson, Joan
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham
    MacInnis, Robert
    Maier, Christiane
    Whittemore, Alice S.
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catolona, William J.
    Foulkes, William
    Mandal, Diptasri
    Eeles, Rosalind
    Kote-Jarai, Zsofia
    Ackerman, Michael J.
    Olson, Timothy M.
    Klein, Christopher J.
    Thibodeau, Stephen N.
    Schaid, Daniel J.
    GENETIC EPIDEMIOLOGY, 2016, 40 (06) : 461 - 469