Realizability of Fault-Tolerant Graphs

被引:2
作者
Hong, Yanmei [1 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
关键词
Fault tolerance; Maximally connected; Super-connected; Super connectivity; Realizability; CONNECTIVITY; EXTRACONNECTIVITY; NETWORKS; DIGRAPHS; VERTEX;
D O I
10.1007/s40840-015-0130-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G is optimal-K if the connectivity kappa (G) = delta(G), where delta(G) is the minimum degree of G. It is super-kappa if every minimum vertex cut isolates a vertex. An optimal-kappa graph G is m-optimal-kappa if for any vertex set S subset of V (G) with vertical bar S vertical bar <= m, G-S is still optimal-kappa. The maximum integer of such in, denoted by O-kappa (G), is the vertex fault tolerance of G with respect to the property of optimal-kappa. The concept of vertex fault tolerance with respect to the property of super-kappa, denoted by S-kappa (G), is defined in a similar way. In a previous paper, we have proved that min{kappa(1)(G) - delta(G), delta(G) - 1} <= O-kappa (G) <= delta(G) - 1 and min{kappa(1) (G) - delta(G) - 1, delta(G) -1} <= S-kappa (G) <= delta(G) - 1. We also have S-kappa (G) <= O-kappa (G) <= delta(G) - 1. In this paper, we study the realizability problems concerning the above three bounds. By construction, we proved that for any non-negative integers a, b, c with a <= b <= c. (i) there exists a graph G such that kappa(1)(G) - delta(G) = a, O-kappa (G) = b, and delta(G) - 1 = c; (ii) there exists a graph G with kappa(1) (G) - delta(G) - 1 = a, S-kappa(G) = b, and delta(G) - 1 = c; and (iii) there exists a graph G such that S-kappa (G) = a, O-kappa (G) = b, and delta(G) - 1 = c.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条
  • [1] Realizability of Fault-Tolerant Graphs
    Yanmei Hong
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 619 - 631
  • [2] Fault-Tolerant Spanners for General Graphs
    Chechik, S.
    Langberg, M.
    Peleg, D.
    Roditty, L.
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 435 - 444
  • [3] Enabling high fault-tolerant embedding capability of alternating group graphs
    Zhuang, Hongbin
    Li, Xiao-Yan
    Wang, Dajin
    Lin, Cheng-Kuan
    Zhao, Kun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 110 - 121
  • [4] Nonadaptive fault-tolerant file transmission in rotator graphs
    Hamada, Y
    Bao, F
    Mei, AH
    Igarashi, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (04) : 477 - 482
  • [5] Conditional Fault-Tolerant Cycle Embedding of Star Graphs
    Yang, Ming-Chien
    2009 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT 2009), 2009, : 67 - 71
  • [6] On the fault-tolerant diameter and wide diameter of ω-connected graphs
    Yin, JH
    Li, JS
    Chen, GL
    Zhong, C
    NETWORKS, 2005, 45 (02) : 88 - 94
  • [7] An optimal result on fault-tolerant cycle-embedding in alternating group graphs
    Xue, Zhan-jun
    Liu, San-yang
    INFORMATION PROCESSING LETTERS, 2009, 109 (21-22) : 1197 - 1201
  • [8] Fault-tolerant routing in burnt pancake graphs
    Iwasaki, Tatsuya
    Kaneko, Keiichi
    INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 535 - 538
  • [9] Construction schemes for fault-tolerant Hamiltonian graphs
    Wang, JJ
    Hung, CN
    Tan, JJM
    Hsu, LH
    Sung, TY
    NETWORKS, 2000, 35 (03) : 233 - 245
  • [10] Fault-tolerant cube graphs and coding theory
    Bruck, J
    Ho, CT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 2217 - 2221