High resolution photon time-tagging lidar for atmospheric point cloud generation

被引:27
作者
Barton-Grimley, Rory A. [1 ]
Stillwell, Robert A. [2 ]
Thayer, Jeffrey P. [1 ]
机构
[1] Univ Colorado, Ann & HJ Smead Aerosp Engn Sci Dept, 1111 Engn Dr, Boulder, CO 80309 USA
[2] Natl Ctr Atmospher Res, Adv Study Program, Earth Observing Lab, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
DEAD-TIME; POLARIZATION; RANGE; DEPOLARIZATION; SYSTEM;
D O I
10.1364/OE.26.026030
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The application of time-correlated single photon counting hardware and techniques to atmospheric lidar is presented. The results establish the viability of adapting photon time-tagging techniques to atmospheric lidar systems, facilitating high-range resolution (millimeter-level precision) and dynamic system observing capabilities that address the variety of atmospheric scatterers often present in atmospheric lidar profiles. The technique is demonstrated through measurements made by a high repetition rate, low pulse energy, elastic scattering, photon counting lidar. Detection probabilities with a non-zero system dead-time are derived and tested using acquired data. Atmospheric point cloud generation and the statistical implications on data retrievals utilizing this approach are presented. The results show an ability to preserve backscattered intensities while generating photon detections at picosecond resolution from a variety atmospheric scatterers. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:26030 / 26044
页数:15
相关论文
共 41 条
[21]  
Kapusta P., 2015, Advanced Photon Counting
[22]   STABLE ANALYTICAL INVERSION SOLUTION FOR PROCESSING LIDAR RETURNS [J].
KLETT, JD .
APPLIED OPTICS, 1981, 20 (02) :211-220
[23]   Resolving range ambiguity in a photon counting depth imager operating at kilometer distances [J].
Krichel, Nils J. ;
McCarthy, Aongus ;
Buller, Gerald S. .
OPTICS EXPRESS, 2010, 18 (09) :9192-9206
[24]   Influence of dead-time on detection efficiency and range performance of photon-counting laser radar that uses a Geiger-mode avalanche photodiode [J].
Li, Zhijian ;
Lai, Jiancheng ;
Wang, Chunyong ;
Yan, Wei ;
Li, Zhenhua .
APPLIED OPTICS, 2017, 56 (23) :6680-6687
[25]   Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations [J].
Marais, Willem J. ;
Holz, Robert E. ;
Hu, Yu Hen ;
Kuehn, Ralph E. ;
Eloranta, Edwin E. ;
Willett, Rebecca M. .
APPLIED OPTICS, 2016, 55 (29) :8316-8334
[26]   Time-of-flight optical ranging system based on time-correlated single-photon counting [J].
Massa, JS ;
Buller, GS ;
Walker, AC ;
Cova, S ;
Umasuthan, M ;
Wallace, AM .
APPLIED OPTICS, 1998, 37 (31) :7298-7304
[27]   Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection [J].
McCarthy, Aongus ;
Krichel, Nils J. ;
Gemmell, Nathan R. ;
Ren, Ximing ;
Tanner, Michael G. ;
Dorenbos, Sander N. ;
Zwiller, Val ;
Hadfield, Robert H. ;
Buller, Gerald S. .
OPTICS EXPRESS, 2013, 21 (07) :8904-8915
[28]   Cloud Physics Lidar: instrument description and initial measurement results [J].
McGill, M ;
Hlavka, D ;
Hart, W ;
Scott, VS ;
Spinhirne, J ;
Schmid, B .
APPLIED OPTICS, 2002, 41 (18) :3725-3734
[29]   DEPOLARIZATION OF LIGHT BACKSCATTERED BY RANDOMLY ORIENTED NONSPHERICAL PARTICLES [J].
MISHCHENKO, MI ;
HOVENIER, JW .
OPTICS LETTERS, 1995, 20 (12) :1356-&
[30]   Ranging through Shallow Semitransparent Media with Polarization Lidar [J].
Mitchell, Steven E. ;
Thayer, Jeffrey P. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (03) :681-697