Soil properties and microbial processes in response to land-use change in agricultural highlands of the Central Andes

被引:6
作者
Coca-Salazar, Alejandro [1 ,2 ]
Cornelis, Jean-Thomas [3 ]
Carnol, Monique [2 ]
机构
[1] Univ Mayor San Simon, Lab Suelos & Aguas, Ave Petr Km 5 1-2 S-N, Cochabamba, Bolivia
[2] Univ Liege, InBioS, Lab Plant & Microbial Ecol, Liege, Belgium
[3] Univ Liege, Gembloux Agrobio Tech, TERRA Teaching & Res Ctr, Gembloux, Belgium
关键词
Bolivia; Eucalyptus globulus; hot water extractable carbon; microbial activity; microbial biomass; Solanum tuberosum; EXTRACTABLE ORGANIC-MATTER; NITROGEN TRANSFORMATIONS; FUNCTIONAL DIVERSITY; LITTER DECOMPOSITION; BIOMASS; CARBON; FOREST; DYNAMICS; COMMUNITIES; PHOSPHORUS;
D O I
10.1111/ejss.13110
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Understanding changes in soil functions in response to land-use change is important for guiding agricultural practices towards sustainable soil management. We evaluated the differences in soil properties (soil organic matter, water extractable carbon (C) and nitrogen (N), microbial biomass, pH(KCL) and exchangeable cations) and microbial processes (respiration potential, net N mineralization, net nitrification and metabolic potential of soil bacteria), as well as the relative importance of soil properties in explaining changes in processes under three land uses (potato crops, fallow fields and eucalyptus plantations) in the agricultural highlands of the Central Andes. Soils under potato crops were characterized by the highest net N mineralization and net nitrification rates, and extractable phophorus (P), and the lowest microbial biomass P. Conversion to eucalyptus plantations led to an increase in soil organic matter, water extractable C and microbial biomass, and a decrease in extractable P and metabolic diversity of soil bacteria. Higher exchangeable aluminium (Al) indicated soil acidification under eucalyptus. Fallow practices did not lead to major changes in soil properties and microbial processes, indicating that fallow practices for up to 6 years were too short to substantially contribute to soil fertility restoration. Hot water extractable carbon (HWC) showed the best relationship with soil processes (respiration potential, net N mineralization and net nitrification). Our results highlight the necessity of alternative management practices for maintaining soil fertility under potato crops, the drastic modification of soil properties and processes under eucalyptus plantations, and the potential of HWC as a proxy for monitoring land-use-induced changes in soil functions related to C and N cycling. Highlights Effects of conversion from potato crops to eucalyptus and fallow on soil properties and processes were assessed. Under eucalyptus, soil respiration increased; metabolic diversity and N transformations decreased. Short fallow periods did not result in soil fertility restoration. Hot water extractable C was the best indicator of changes in soil processes.
引用
收藏
页码:2292 / 2307
页数:16
相关论文
共 50 条
  • [31] Effects of land-use change on soil microbial C, N and P in a Himalayan watershed
    Sharma, P
    Rai, SC
    Sharma, R
    Sharma, E
    PEDOBIOLOGIA, 2004, 48 (01) : 83 - 92
  • [32] Land use change, but not soil macrofauna, affects soil aggregates and aggregate-associated C content in central highlands of Kenya
    Morlue, Ballayan
    Kamau, Solomon
    Ayuke, Fredrick O.
    Kironchi, Geoffrey
    JOURNAL OF SOILS AND SEDIMENTS, 2021, 21 (03) : 1360 - 1370
  • [33] Land use change and its effect on selected soil properties in the northwest highlands of Ethiopia
    Molla, Eyayu
    Getnet, Kassie
    Mekonnen, Mulatie
    HELIYON, 2022, 8 (08)
  • [34] THE IMPACT OF LAND-USE CHANGE ON MONTHLY VARIATION OF SOIL NITROGEN IN AN AGRICULTURAL REGION AT MID-HIGH LATITUDE
    Wu, Linna
    Yang, Shengtian
    Zhao, Changsen
    Hao, Fanghua
    Dong, Guotao
    Yang, Yongan
    Wang, Zhiwei
    Lou, Hezhen
    FRESENIUS ENVIRONMENTAL BULLETIN, 2016, 25 (10): : 3847 - 3858
  • [35] Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties
    Jangid, Kamlesh
    Williams, Mark A.
    Franzluebbers, Alan J.
    Schmidt, Thomas M.
    Coleman, David C.
    Whitman, William B.
    SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (10) : 2184 - 2193
  • [36] Responses of Soil Microbial Community Composition and Enzyme Activities to Land-Use Change in the Eastern Tibetan Plateau, China
    Luo, Da
    Cheng, Rui-Mei
    Liu, Shun
    Shi, Zuo-Min
    Feng, Qiu-Hong
    FORESTS, 2020, 11 (05):
  • [37] Soil quality dynamics in response to land-use management types and slope positions in northeastern highlands of Ethiopia
    Belay, Andualem
    Assen, Mohammed
    Abegaz, Assefa
    ENVIRONMENTAL AND SUSTAINABILITY INDICATORS, 2025, 26
  • [38] Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands
    Wanyama, I.
    Rufino, M. C.
    Pelster, D. E.
    Wanyama, G.
    Atzberger, C.
    van Asten, P.
    Verchot, Louis V.
    Butterbach-Bahl, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2018, 123 (03) : 976 - 990
  • [39] Responses of Soil Phosphorus Fractions to Land-Use Change in Colombian Amazon
    Chavarro-Bermeo, Juan P.
    Arruda, Bruna
    Mora-Motta, Duber A.
    Bejarano-Herrera, Wilfrand
    Ortiz-Morea, Fausto A.
    Somenahally, Anil
    Silva-Olaya, Adriana M.
    SUSTAINABILITY, 2022, 14 (04)
  • [40] Land-use and topography shape soil and groundwater salinity in central Argentina
    Nosetto, M. D.
    Acosta, A. M.
    Jayawickreme, D. H.
    Ballesteros, S. I.
    Jackson, R. B.
    Jobbagy, E. G.
    AGRICULTURAL WATER MANAGEMENT, 2013, 129 : 120 - 129