LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR TIME-DEPENDENT INCOMPRESSIBLE FLUID FLOW

被引:17
|
作者
Wang, Haijin [1 ]
Liu, Yunxian [2 ]
Zhang, Qiang [3 ]
Shu, Chi-Wang [4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[4] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
Local discontinuous Galerkin method; implicit-explicit scheme; incompressible flow; Oseen equation; Navier-Stokes; stability; error estimate; NAVIER-STOKES EQUATIONS; DIFFUSION PROBLEMS; OSEEN EQUATIONS;
D O I
10.1090/mcom/3312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equations numerically. For the Oseen equation, using first order IMEX time discretization as an example, we show that the IMEX-LDG scheme is unconditionally stable for Q(k) elements on cartesian meshes, in the sense that the time-step tau is only required to be bounded from above by a positive constant independent of the spatial mesh size h. Furthermore, by the aid of the Stokes projection and an elaborate energy analysis, we obtain the L-infinity(L-2) optimal error estimates for both the velocity and the stress (gradient of velocity), in both space and time. By the inf-sup argument, we also obtain the L-infinity(L-2) optimal error estimates for the pressure. Numerical experiments are given to validate our main results.
引用
收藏
页码:91 / 121
页数:31
相关论文
共 50 条
  • [1] STABILITY ANALYSIS AND ERROR ESTIMATES OF LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR THE TIME-DEPENDENT FOURTH ORDER PDES
    Wang, Haijin
    Zhang, Qiang
    Shu, Chi-Wang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (05): : 1931 - 1955
  • [2] Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn-Hilliard equation
    Shi, Hui
    Li, Ying
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 719 - 731
  • [3] LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR MULTI-DIMENSIONAL CONVECTION-DIFFUSION PROBLEMS
    Wang, Haijin
    Wang, Shiping
    Zhang, Qiang
    Shu, Chi-Wang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04): : 1083 - 1105
  • [4] STABILITY AND ERROR ESTIMATES OF LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR ADVECTION-DIFFUSION PROBLEMS
    Wang, Haijin
    Shu, Chi-Wang
    Zhang, Qiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 206 - 227
  • [5] ANALYSIS OF LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME MARCHING FOR LINEARIZED KDV EQUATION
    Wang, Haijin
    Tao, Qi
    Shu, Chi-wang
    Zhang, Qiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (05) : 2222 - 2248
  • [6] A Stable Discontinuous Galerkin Time-Domain Method with Implicit-Explicit Time-Marching for Lossy Media
    Xiang, Ru
    Ma, Xikui
    Ma, Liang
    Chi, Mingjun
    Wang, Jiawei
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [7] Local Discontinuous Galerkin Method with Implicit-Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media
    Wang, Haijin
    Zheng, Jingjing
    Yu, Fan
    Guo, Hui
    Zhang, Qiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 1 - 28
  • [8] Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems
    Wang, Haijin
    Shu, Chi-Wang
    Zhang, Qing
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 237 - 258
  • [9] ANALYSIS OF AN EMBEDDED DISCONTINUOUS GALERKIN METHOD WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR CONVECTION-DIFFUSION PROBLEMS
    Fu, Guosheng
    Shu, Chi-Wang
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (4-5) : 477 - 499
  • [10] Local discontinuous Galerkin methods with implicit-explicit BDF time marching for Newell-Whitehead-Segel equations
    Wang, Haijin
    Shi, Xiaobin
    Shao, Rumeng
    Zhu, Hongqiang
    Chen, Yanping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025, 102 (03) : 465 - 479