Extremal norms of the potentials recovered from inverse Dirichlet problems

被引:26
作者
Qi, Jiangang [1 ]
Chen, Shaozhu [1 ]
机构
[1] Shandong Univ Weihai, Dept Math, Weihai 264209, Peoples R China
关键词
Sturm-Liouville problem; inverse problem; Lyapunov-type inequality; bound on eigenvalue; STURM-LIOUVILLE OPERATORS; EIGENVALUES;
D O I
10.1088/0266-5611/32/3/035007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the Sturm-Liouville eigenvalue problem -y"(x) + q(x) y(x) = lambda y(x), x is an element of [0,1], y(0)= y(1) = 0, where q is an element of L-1[0, 1], and its spectrum is denoted by sigma(q). For a real number lambda, define Omega(lambda)= {q is an element of L-1[0, 1]: lambda is an element of sigma(q)} and E(lambda)= inf{parallel to q parallel to: q is an element of Omega(lambda)}. We will set up a formula for E (lambda) explicitly in terms of. and specify where the infimum can be attained. As an application, we will give the extremal values of the nth eigenvalue of the Dirichlet problem for potentials on a sphere L-1[0, 1], n >=[1. The proofs are based on a new Lyapunov-type inequality for Sturm-Liouville equations with potentials.
引用
收藏
页数:13
相关论文
共 8 条
[1]  
Egorov Yu V, USPEKHI MAT NAUK, V51, P73
[2]  
Egorov Yu V, 1996, RUSS MATH SURV, V51, P439
[3]   Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials [J].
Hryniv, R. O. ;
Mykytyuk, Y. V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) :27-57
[4]   Spreading speeds and traveling waves for periodic evolution systems [J].
Liang, Xing ;
Yi, Yingfei ;
Zhao, Xiao-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) :57-77
[5]  
Poschel J., 1987, Inverse Spectral Theory
[6]   On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces [J].
Savchuk, A. M. ;
Shkalikov, A. A. .
MATHEMATICAL NOTES, 2006, 80 (5-6) :814-832
[7]   Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls [J].
Wei, Qiaoling ;
Meng, Gang ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (02) :364-400
[8]   Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls [J].
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (11) :4188-4220