Outer-connected domination in graphs

被引:0
|
作者
Jiang, Hongxing [2 ]
Shan, Erfang [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325000, Peoples R China
关键词
Outer-connected domination; Nordhaus-Gaddum-type inequality; Tree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a graph G = (V, E) is an outerconnected dominating set (OCDS) of G if S is a dominating set of G and G[V - S] is connected. The outer-connected domination number of G is the minimum cardinality of an OCDS of G. In this paper we characterize the graphs with large outer-connected domination number. Also, we give Nordhaus-Gaddum-type inequality on outer-connected domination and characterize the graphs with the right equality.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [31] Domination parameters in Mycielski graphs
    Chen, Xue-gang
    Xing, Hua-ming
    UTILITAS MATHEMATICA, 2006, 71 : 235 - 244
  • [32] On Signed Star Domination in Graphs
    Zhao, Yan-cai
    Shan, Er-fang
    Miao, Lian-ying
    Liang, Zuo-song
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (02): : 452 - 457
  • [33] On Signed Star Domination in Graphs
    Yan-cai ZHAO
    Er-fang SHAN
    Lian-ying MIAO
    Zuo-song LIANG
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 452 - 457
  • [34] On the mixed domination problem in graphs
    Lan, James K.
    Chang, Gerard Jennhwa
    THEORETICAL COMPUTER SCIENCE, 2013, 476 : 84 - 93
  • [35] On some domination colorings of graphs
    Bagan, Guillaume
    Boumediene-Merouane, Houcine
    Haddad, Mohammed
    Kheddouci, Hamamache
    DISCRETE APPLIED MATHEMATICS, 2017, 230 : 34 - 50
  • [36] On trees with equal domination and total outer-independent domination numbers
    Krzywkowski, Marcin
    UTILITAS MATHEMATICA, 2015, 98 : 197 - 206
  • [37] Weakly connected domination stable trees
    Magdalena Lemańska
    Joanna Raczek
    Czechoslovak Mathematical Journal, 2009, 59 : 95 - 100
  • [38] WEAKLY CONNECTED DOMINATION STABLE TREES
    Lemanska, Magdalena
    Raczek, Joanna
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (01) : 95 - 100
  • [39] ON TREES WITH EQUAL TOTAL DOMINATION AND 2-OUTER-INDEPENDENT DOMINATION NUMBERS
    Krzywkowski, Marcin
    MATHEMATICAL REPORTS, 2016, 18 (01):
  • [40] On the Secure Total Domination Number of Graphs
    Cabrera Martinez, Abel
    Montejano, Luis P.
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2019, 11 (09):