Principal bundle structures among second order frame bundles

被引:2
|
作者
de Leon, M. [1 ]
Martin Mendez, A. [2 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 15,Campus Cotoblanco UAM, E-28049 Madrid, Spain
[2] Univ Vigo, ETSI Telecomunicac, Dept Matemat Aplicada 2, Vigo 36310, Pontevedra, Spain
关键词
Non-holonomic; semi-holonomic and holonomic frame; Jet bundle;
D O I
10.1016/j.difgeo.2016.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a model for the bundle (F) over cap M-2 of semi-holonomic second order frames of a manifold M as an extension of the bundle (FM)-M-2 of holonomic second order frames of M, we introduce in (F) over cap M-2 a principal bundle structure over (FM)-M-2, the structure group being the additive group A(2) (n) of skew-symmetric bilinear maps from R-n x R-n into R-n. The composition of the projection of that structure with the existing projection of the bundle (F) over cap M-2 of non-holonomic second order frames of M over (F) over cap M-2 provides a principal bundle structure in (F) over cap M-2 over (F) over cap M-2. These results close an existing gap in the theory of second order frame bundles. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 50 条
  • [41] Studies on the methods of stability function and finite element for second-order analysis of frame structures
    Chan, SL
    Gu, JX
    ADVANCES IN STEEL STRUCTURES, VOLS 1 AND 2, 1999, : 193 - 200
  • [42] THE NATURAL AFFINORS ON THE r-TH ORDER FRAME BUNDLE
    Kurek, J.
    Mikulski, W. M.
    DEMONSTRATIO MATHEMATICA, 2008, 41 (03) : 701 - 704
  • [43] Analysis of Second-Order Effect in Frame
    毕继红
    丛蓉
    张利华
    Transactions of Tianjin University, 2004, (01) : 16 - 18
  • [44] A quasi-second-order proximal bundle algorithm
    Mifflin, R
    MATHEMATICAL PROGRAMMING, 1996, 73 (01) : 51 - 72
  • [45] A DECOMPOSITION OF THE BUNDLE OF SECOND ORDER JETS ON A COMPLEX MANIFOLD
    Manea, Adelina
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 151 - 162
  • [46] CANONICAL 1-FORMS ON HIGHER ORDER ADAPTED FRAME BUNDLES
    Kurek, Jan
    Mikulski, Wlodzimierz M.
    ARCHIVUM MATHEMATICUM, 2008, 44 (02): : 115 - 118
  • [47] Approximate Hermitian–Yang–Mills structures on semistable principal Higgs bundles
    Ugo Bruzzo
    Beatriz Graña Otero
    Annals of Global Analysis and Geometry, 2015, 47 : 1 - 11
  • [48] The spectral bundle method with second-order information
    Helmberg, C.
    Overton, M. L.
    Rendl, F.
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 855 - 876
  • [49] Existence of approximate Hermitian-Einstein structures on semistable principal bundles
    Biswas, Indranil
    Jacob, Adam
    Stemmler, Matthias
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07): : 745 - 751
  • [50] Determinant Bundle Over the Universal Moduli Space of Principal Bundles Over the Teichmüller Space
    Arideep Saha
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 129 - 149