Support vector EEG classification in the Fourier and time-frequency correlation domains

被引:44
作者
Garcia, GN [1 ]
Ebrahimi, T [1 ]
Vesin, JM [1 ]
机构
[1] Swiss Fed Inst Technol, EPFL, CH-1015 Lausanne, Switzerland
来源
1ST INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2003, CONFERENCE PROCEEDINGS | 2003年
关键词
direct brain-computer communication; EEG classification; SVM; optimal SVM parameter choice; time-frequency correlation;
D O I
10.1109/CNE.2003.1196897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we use support vector machines (SVM) for classifying EEG signals corresponding to imagined motor movements. The parameters of an SVM Kernel are optimized for minimizing a theoretical error bound. Fourier features and correlative time-frequency based features are extracted from EEG signals and compared with respect to their discriminatory power.
引用
收藏
页码:591 / 594
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[3]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[4]  
GARCIA G, 2002, IEEE INT C DIG SIG P, V1, P301
[5]  
Klem G H, 1999, Electroencephalogr Clin Neurophysiol Suppl, V52, P3
[6]   Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery [J].
Neuper, C ;
Schlögl, A ;
Pfurtscheller, G .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1999, 16 (04) :373-382
[7]  
Vapnik V., 1998, STAT LEARNING THEORY, V1, P2
[8]  
Vapnik V., 2013, NATURE STAT LEARNING
[9]   Brain-computer interfaces for communication and control [J].
Wolpaw, JR ;
Birbaumer, N ;
McFarland, DJ ;
Pfurtscheller, G ;
Vaughan, TM .
CLINICAL NEUROPHYSIOLOGY, 2002, 113 (06) :767-791