Proteomic Analyses of the Eukaryotic Replication Machinery

被引:25
作者
Cortez, David [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Nashville, TN 37212 USA
来源
DNA REPAIR ENZYMES: CELL, MOLECULAR, AND CHEMICAL BIOLOGY | 2017年 / 591卷
关键词
NASCENT DNA; MASS-SPECTROMETRY; GENOME INTEGRITY; CELL-CYCLE; PROTEINS; FORKS; IDENTIFICATION; DYNAMICS; REVEALS; IPOND;
D O I
10.1016/bs.mie.2017.03.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
DNA replication in a human cell involves hundreds of proteins that copy the DNA accurately and completely each cell division cycle. In addition to the core DNA copying machine (the replisome), accessory proteins work to respond to replication stress, correct errors, and repackage the DNA into appropriate chromatin structures. New proteomic tools have been invented in the past few years to facilitate the purification, identification, and quantification of the replication, chromatin maturation, and replication stress response machineries. These tools, including iPOND (isolation of proteins on nascent DNA) and NCC (nascent chromatin capture), have yielded discoveries of new proteins involved in these processes and insights into the dynamic regulatory processes ensuring genome and chromatin integrity. In this review, I will introduce these experimental approaches and examine how they have been utilized to define the replication fork proteome.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 50 条
[31]   Eukaryotic cellular intricacies shape mitochondrial proteomic complexity [J].
Hammond, Michael ;
Dorrell, Richard G. ;
Speijer, Dave ;
Lukes, Julius .
BIOESSAYS, 2022, 44 (05)
[32]   The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm [J].
Dahan, Nili ;
Choder, Mordechai .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2013, 1829 (01) :169-173
[33]   Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background [J].
Zhao, Haiyan ;
Wang, Jianshe ;
Qu, Yunfang ;
Peng, Renhai ;
Magwanga, Richard Odongo ;
Liu, Fang ;
Huang, Jinling .
BMC GENOMICS, 2020, 21 (01)
[34]   Multi-layered proteomic analyses decode compositional and functional effects of cancer mutations on kinase complexes [J].
Mehnert, Martin ;
Ciuffa, Rodolfo ;
Frommelt, Fabian ;
Uliana, Federico ;
van Drogen, Audrey ;
Ruminski, Kilian ;
Gstaiger, Matthias ;
Aebersold, Ruedi .
NATURE COMMUNICATIONS, 2020, 11 (01)
[35]   Proteomic Analyses of Host and Pathogen Responses during Bovine Mastitis [J].
Boehmer, Jamie L. .
JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2011, 16 (04) :323-338
[36]   Integration of proteomic analyses to monitor the activity status of phosphorylation signaling [J].
Nagano, Kohji ;
Shinkawa, Takashi ;
Yabuki, Nami ;
Mutoh, Hironori ;
Inomata, Noriyuki ;
Watanabe, Yoshinori ;
Ashihara, Motooki ;
Nagahashi, Shigehisa ;
Ishii, Nobuya ;
Aoki, Yuko ;
Haramura, Masayuki .
JOURNAL OF PROTEOMICS, 2011, 74 (03) :319-326
[37]   Proteomic analyses of the Xiphophorus Gordon-Kosswig melanoma model [J].
Perez, Amy N. ;
Oehlers, Lee ;
Heater, Shelia J. ;
Booth, Rachell E. ;
Walter, Ronald B. ;
David, Wendi M. .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY, 2012, 155 (01) :81-88
[38]   Proteomic and N-glycoproteomic analyses of total subchondral bone protein in patients with primary knee osteoarthritis [J].
Feng, Gangning ;
Zhou, Yong ;
Yan, Jiangbo ;
Wang, Zheng ;
Yang, Yong ;
Zhao, Weidong ;
Wang, Na ;
Lu, Zhidong ;
Chen, Yaogeng ;
Jin, Qunhua .
JOURNAL OF PROTEOMICS, 2023, 280
[39]   Roles of phosphatases in eukaryotic DNA replication initiation control [J].
Jenkinson, Fiona ;
Zegerman, Philip .
DNA REPAIR, 2022, 118
[40]   Tolerating DNA damage during eukaryotic chromosome replication [J].
Saugar, Irene ;
Angeles Ortiz-Bazan, Maria ;
Antonio Tercero, Jose .
EXPERIMENTAL CELL RESEARCH, 2014, 329 (01) :170-177