Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression

被引:60
|
作者
Hollmann, E. M. [1 ]
Commaux, N. [2 ]
Eidietis, N. W. [3 ]
Evans, T. E. [4 ]
Humphreys, D. A. [4 ]
James, A. N. [1 ]
Jernigan, T. C. [2 ]
Parks, P. B. [3 ]
Strait, E. J. [4 ]
Wesley, J. C. [3 ]
Yu, J. H. [1 ]
Austin, M. E. [4 ]
Baylor, L. R. [2 ]
Brooks, N. H. [3 ]
Izzo, V. A. [1 ]
Jackson, G. L. [3 ]
van Zeeland, M. A. [3 ]
Wu, W. [3 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
[4] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA
关键词
plasma collision processes; plasma impurities; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices; FAST PLASMA SHUTDOWN; DISRUPTION MITIGATION; CURRENT TERMINATION; PELLET EXPERIMENTS; IMPURITY; ABLATION;
D O I
10.1063/1.3309426
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments have been performed in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] toward understanding runaway electron formation and amplification during rapid discharge shutdown, as well as toward achieving complete collisional suppression of these runaway electrons via massive delivery of impurities. Runaway acceleration and amplification appear to be well explained using the zero-dimensional (0D) current quench toroidal electric field. 0D or even one-dimensional modeling using a Dreicer seed term, however, appears to be too small to explain the initial runaway seed formation. Up to 15% of the line-average electron density required for complete runaway suppression has been achieved in the middle of the current quench using optimized massive gas injection with multiple small gas valves firing simultaneously. The novel rapid shutdown techniques of massive shattered pellet injection and shell pellet injection have been demonstrated for the first time. Experiments using external magnetic perturbations to deconfine runaways have shown promising preliminary results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3309426]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Novel rapid shutdown strategies for runaway electron suppression in DIII-D
    Commaux, N.
    Baylor, L. R.
    Combs, S. K.
    Eidietis, N. W.
    Evans, T. E.
    Foust, C. R.
    Hollmann, E. M.
    Humphreys, D. A.
    Izzo, V. A.
    James, A. N.
    Jernigan, T. C.
    Meitner, S. J.
    Parks, P. B.
    Wesley, J. C.
    Yu, J. H.
    NUCLEAR FUSION, 2011, 51 (10)
  • [2] Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
    Hollmann, E. M.
    Austin, M. E.
    Boedo, J. A.
    Brooks, N. H.
    Commaux, N.
    Eidietis, N. W.
    Humphreys, D. A.
    Izzo, V. A.
    James, A. N.
    Jernigan, T. C.
    Loarte, A.
    Martin-Solis, J.
    Moyer, R. A.
    Munoz-Burgos, J. M.
    Parks, P. B.
    Rudakov, D. L.
    Strait, E. J.
    Tsui, C.
    Van Zeeland, M. A.
    Wesley, J. C.
    Yu, J. H.
    NUCLEAR FUSION, 2013, 53 (08)
  • [3] Use of Ar pellet ablation rate to estimate initial runaway electron seed population in DIII-D rapid shutdown experiments
    Hollmann, E. M.
    Commaux, N.
    Moyer, R. A.
    Parks, P. B.
    Austin, M. E.
    Bykov, I.
    Cooper, C.
    Eidietis, N. W.
    O'Mullane, M.
    Paz-Soldan, C.
    Rudakov, D. L.
    Shiraki, D.
    NUCLEAR FUSION, 2017, 57 (01)
  • [4] Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER
    Izzo, V. A.
    Hollmann, E. M.
    James, A. N.
    Yu, J. H.
    Humphreys, D. A.
    Lao, L. L.
    Parks, P. B.
    Sieck, P. E.
    Wesley, J. C.
    Granetz, R. S.
    Olynyk, G. M.
    Whyte, D. G.
    NUCLEAR FUSION, 2011, 51 (06)
  • [5] An in situ runaway electron diagnostic for DIII-D
    Wurden, G. A.
    Oertel, J. A.
    Evans, T. E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [6] Electron cyclotron wave experiments on DIII-D
    Petty, CC
    deGrassie, JS
    Harvey, RW
    Lin-Liu, YR
    Lohr, JM
    Luce, TC
    Makowski, MA
    Omelchenko, YA
    Prater, R
    RADIO FREQUENCY POWER IN PLASMAS, 2001, 595 : 275 - 281
  • [7] DIII-D and ITER rapid shutdown with radially uniform deuterium delivery
    Izzo, V. A.
    Parks, P. B.
    Lao, L. L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (10)
  • [8] Spatially dependent modeling and simulation of runaway electron mitigation in DIII-D
    Beidler, M. T.
    del-Castillo-Negrete, D.
    Baylor, L. R.
    Shiraki, D.
    Spong, D. A.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [9] DIII-D Electron Cyclotron Heating System and Experiments
    Gorelov, Y.
    Lohr, J.
    Ponce, D.
    Torrezan, A.
    Cengher, M.
    2017 42ND INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2017,
  • [10] Recent DIII-D advances in runaway electron measurement and model validation
    Paz-Soldan, C.
    Eidietis, N. W.
    Hollmann, E. M.
    Aleynikov, P.
    Carbajal, L.
    Heidbrink, W. W.
    Hoppe, M.
    Liu, C.
    Lvovskiy, A.
    Shiraki, D.
    Spong, D.
    Brennan, D. P.
    Cooper, C. M.
    del-Castillo-Negrete, D.
    Du, X.
    Embreus, O.
    Fulop, T.
    Herfindal, J.
    Moyer, R.
    Parks, P.
    Thome, K. E.
    NUCLEAR FUSION, 2019, 59 (06)