Relative entropic uncertainty relation

被引:7
作者
Floerchinger, Stefan [1 ]
Haas, Tobias [1 ]
Hoeber, Ben [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg 69120, Germany
关键词
QUANTUM INFORMATION; PRINCIPLE; INEQUALITIES; OBSERVABLES;
D O I
10.1103/PhysRevA.103.062209
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spectra. We find that a sum of relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples.
引用
收藏
页数:10
相关论文
共 60 条
[1]  
[Anonymous], 1968, INFORM THEORY STAT
[2]  
[Anonymous], 2009, DIRECTIONAL STAT
[3]   Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation [J].
Barchielli, Alberto ;
Gregoratti, Matteo ;
Toigo, Alessandro .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (03) :1253-1304
[4]   Measurement Uncertainty Relations for Position and Momentum: Relative Entropy Formulation [J].
Barchielli, Alberto ;
Gregoratti, Matteo ;
Toigo, Alessandro .
ENTROPY, 2017, 19 (07)
[5]   QUANTUM-THEORY OF ROTATION ANGLES [J].
BARNETT, SM ;
PEGG, DT .
PHYSICAL REVIEW A, 1990, 41 (07) :3427-3435
[6]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[7]  
Beirlant J., 1997, International Journal of Mathematical and Statistical Sciences, V6, P17
[8]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[9]  
Bialynicki-Birula I., 2011, STAT COMPLEXITY
[10]  
Bialynicki-Birula I., 1984, LECT NOTES MATH, P90